3.207 \(\int \frac {\coth (x)}{\sqrt {a+b \coth ^2(x)+c \coth ^4(x)}} \, dx\)

Optimal. Leaf size=58 \[ \frac {\tanh ^{-1}\left (\frac {2 a+(b+2 c) \coth ^2(x)+b}{2 \sqrt {a+b+c} \sqrt {a+b \coth ^2(x)+c \coth ^4(x)}}\right )}{2 \sqrt {a+b+c}} \]

[Out]

1/2*arctanh(1/2*(2*a+b+(b+2*c)*coth(x)^2)/(a+b+c)^(1/2)/(a+b*coth(x)^2+c*coth(x)^4)^(1/2))/(a+b+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {3701, 1247, 724, 206} \[ \frac {\tanh ^{-1}\left (\frac {2 a+(b+2 c) \coth ^2(x)+b}{2 \sqrt {a+b+c} \sqrt {a+b \coth ^2(x)+c \coth ^4(x)}}\right )}{2 \sqrt {a+b+c}} \]

Antiderivative was successfully verified.

[In]

Int[Coth[x]/Sqrt[a + b*Coth[x]^2 + c*Coth[x]^4],x]

[Out]

ArcTanh[(2*a + b + (b + 2*c)*Coth[x]^2)/(2*Sqrt[a + b + c]*Sqrt[a + b*Coth[x]^2 + c*Coth[x]^4])]/(2*Sqrt[a + b
 + c])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 3701

Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n_.) + (c_.)*(cot[(d_.) + (e
_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] :> -Dist[f/e, Subst[Int[((x/f)^m*(a + b*x^n + c*x^(2*n))^p)/(f^2 + x^
2), x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {\coth (x)}{\sqrt {a+b \coth ^2(x)+c \coth ^4(x)}} \, dx &=-\operatorname {Subst}\left (\int \frac {x}{\left (1+x^2\right ) \sqrt {a-b x^2+c x^4}} \, dx,x,-i \coth (x)\right )\\ &=-\left (\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{(1+x) \sqrt {a-b x+c x^2}} \, dx,x,-\coth ^2(x)\right )\right )\\ &=\operatorname {Subst}\left (\int \frac {1}{4 a+4 b+4 c-x^2} \, dx,x,\frac {2 a+b+(b+2 c) \coth ^2(x)}{\sqrt {a+b \coth ^2(x)+c \coth ^4(x)}}\right )\\ &=\frac {\tanh ^{-1}\left (\frac {2 a+b+(b+2 c) \coth ^2(x)}{2 \sqrt {a+b+c} \sqrt {a+b \coth ^2(x)+c \coth ^4(x)}}\right )}{2 \sqrt {a+b+c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 18.60, size = 141, normalized size = 2.43 \[ \frac {\text {csch}^2(x) \sqrt {\cosh (4 x) (a+b+c)-4 (a-c) \cosh (2 x)+3 a-b+3 c} \tanh ^{-1}\left (\frac {\cosh (2 x) (a+b+c)-a+c}{2 \sqrt {a+b+c} \sqrt {\sinh ^4(x) (a+b+c)+(b+2 c) \sinh ^2(x)+c}}\right )}{2 \sqrt {a+b+c} \sqrt {\text {csch}^4(x) (\cosh (4 x) (a+b+c)-4 (a-c) \cosh (2 x)+3 a-b+3 c)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Coth[x]/Sqrt[a + b*Coth[x]^2 + c*Coth[x]^4],x]

[Out]

(ArcTanh[(-a + c + (a + b + c)*Cosh[2*x])/(2*Sqrt[a + b + c]*Sqrt[c + (b + 2*c)*Sinh[x]^2 + (a + b + c)*Sinh[x
]^4])]*Sqrt[3*a - b + 3*c - 4*(a - c)*Cosh[2*x] + (a + b + c)*Cosh[4*x]]*Csch[x]^2)/(2*Sqrt[a + b + c]*Sqrt[(3
*a - b + 3*c - 4*(a - c)*Cosh[2*x] + (a + b + c)*Cosh[4*x])*Csch[x]^4])

________________________________________________________________________________________

fricas [B]  time = 1.10, size = 1752, normalized size = 30.21 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)/(a+b*coth(x)^2+c*coth(x)^4)^(1/2),x, algorithm="fricas")

[Out]

[1/4*log(((a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*cosh(x)^8 + 8*(a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*cosh(x
)*sinh(x)^7 + (a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*sinh(x)^8 - 4*(a^2 + a*b - b*c - c^2)*cosh(x)^6 + 4*(7*(
a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*cosh(x)^2 - a^2 - a*b + b*c + c^2)*sinh(x)^6 + 8*(7*(a^2 + 2*a*b + b^2
+ 2*(a + b)*c + c^2)*cosh(x)^3 - 3*(a^2 + a*b - b*c - c^2)*cosh(x))*sinh(x)^5 + 2*(3*a^2 + 2*a*b + 2*(a + b)*c
 + 3*c^2)*cosh(x)^4 + 2*(35*(a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*cosh(x)^4 - 30*(a^2 + a*b - b*c - c^2)*cos
h(x)^2 + 3*a^2 + 2*a*b + 2*(a + b)*c + 3*c^2)*sinh(x)^4 + 8*(7*(a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*cosh(x)
^5 - 10*(a^2 + a*b - b*c - c^2)*cosh(x)^3 + (3*a^2 + 2*a*b + 2*(a + b)*c + 3*c^2)*cosh(x))*sinh(x)^3 - 4*(a^2
+ a*b - b*c - c^2)*cosh(x)^2 + 4*(7*(a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*cosh(x)^6 - 15*(a^2 + a*b - b*c -
c^2)*cosh(x)^4 + 3*(3*a^2 + 2*a*b + 2*(a + b)*c + 3*c^2)*cosh(x)^2 - a^2 - a*b + b*c + c^2)*sinh(x)^2 + sqrt(2
)*((a + b + c)*cosh(x)^4 + 4*(a + b + c)*cosh(x)*sinh(x)^3 + (a + b + c)*sinh(x)^4 - 2*(a - c)*cosh(x)^2 + 2*(
3*(a + b + c)*cosh(x)^2 - a + c)*sinh(x)^2 + 4*((a + b + c)*cosh(x)^3 - (a - c)*cosh(x))*sinh(x) + a + b + c)*
sqrt(a + b + c)*sqrt(((a + b + c)*cosh(x)^4 + (a + b + c)*sinh(x)^4 - 4*(a - c)*cosh(x)^2 + 2*(3*(a + b + c)*c
osh(x)^2 - 2*a + 2*c)*sinh(x)^2 + 3*a - b + 3*c)/(cosh(x)^4 - 4*cosh(x)^3*sinh(x) + 6*cosh(x)^2*sinh(x)^2 - 4*
cosh(x)*sinh(x)^3 + sinh(x)^4)) + a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2 + 8*((a^2 + 2*a*b + b^2 + 2*(a + b)*c
+ c^2)*cosh(x)^7 - 3*(a^2 + a*b - b*c - c^2)*cosh(x)^5 + (3*a^2 + 2*a*b + 2*(a + b)*c + 3*c^2)*cosh(x)^3 - (a^
2 + a*b - b*c - c^2)*cosh(x))*sinh(x))/(cosh(x)^4 + 4*cosh(x)^3*sinh(x) + 6*cosh(x)^2*sinh(x)^2 + 4*cosh(x)*si
nh(x)^3 + sinh(x)^4))/sqrt(a + b + c), -1/2*sqrt(-a - b - c)*arctan(sqrt(2)*((a + b + c)*cosh(x)^4 + 4*(a + b
+ c)*cosh(x)*sinh(x)^3 + (a + b + c)*sinh(x)^4 - 2*(a - c)*cosh(x)^2 + 2*(3*(a + b + c)*cosh(x)^2 - a + c)*sin
h(x)^2 + 4*((a + b + c)*cosh(x)^3 - (a - c)*cosh(x))*sinh(x) + a + b + c)*sqrt(-a - b - c)*sqrt(((a + b + c)*c
osh(x)^4 + (a + b + c)*sinh(x)^4 - 4*(a - c)*cosh(x)^2 + 2*(3*(a + b + c)*cosh(x)^2 - 2*a + 2*c)*sinh(x)^2 + 3
*a - b + 3*c)/(cosh(x)^4 - 4*cosh(x)^3*sinh(x) + 6*cosh(x)^2*sinh(x)^2 - 4*cosh(x)*sinh(x)^3 + sinh(x)^4))/((a
^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*cosh(x)^8 + 8*(a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*cosh(x)*sinh(x)^7
+ (a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*sinh(x)^8 - 4*(a^2 + a*b - b*c - c^2)*cosh(x)^6 + 4*(7*(a^2 + 2*a*b
+ b^2 + 2*(a + b)*c + c^2)*cosh(x)^2 - a^2 - a*b + b*c + c^2)*sinh(x)^6 + 8*(7*(a^2 + 2*a*b + b^2 + 2*(a + b)*
c + c^2)*cosh(x)^3 - 3*(a^2 + a*b - b*c - c^2)*cosh(x))*sinh(x)^5 + 2*(3*a^2 + 2*a*b - b^2 + 2*(3*a + b)*c + 3
*c^2)*cosh(x)^4 + 2*(35*(a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*cosh(x)^4 - 30*(a^2 + a*b - b*c - c^2)*cosh(x)
^2 + 3*a^2 + 2*a*b - b^2 + 2*(3*a + b)*c + 3*c^2)*sinh(x)^4 + 8*(7*(a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*cos
h(x)^5 - 10*(a^2 + a*b - b*c - c^2)*cosh(x)^3 + (3*a^2 + 2*a*b - b^2 + 2*(3*a + b)*c + 3*c^2)*cosh(x))*sinh(x)
^3 - 4*(a^2 + a*b - b*c - c^2)*cosh(x)^2 + 4*(7*(a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*cosh(x)^6 - 15*(a^2 +
a*b - b*c - c^2)*cosh(x)^4 + 3*(3*a^2 + 2*a*b - b^2 + 2*(3*a + b)*c + 3*c^2)*cosh(x)^2 - a^2 - a*b + b*c + c^2
)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2 + 8*((a^2 + 2*a*b + b^2 + 2*(a + b)*c + c^2)*cosh(x)^7 - 3
*(a^2 + a*b - b*c - c^2)*cosh(x)^5 + (3*a^2 + 2*a*b - b^2 + 2*(3*a + b)*c + 3*c^2)*cosh(x)^3 - (a^2 + a*b - b*
c - c^2)*cosh(x))*sinh(x)))/(a + b + c)]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)/(a+b*coth(x)^2+c*coth(x)^4)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.16, size = 52, normalized size = 0.90 \[ \frac {\arctanh \left (\frac {b \left (\coth ^{2}\relax (x )\right )+2 c \left (\coth ^{2}\relax (x )\right )+2 a +b}{2 \sqrt {a +b +c}\, \sqrt {a +b \left (\coth ^{2}\relax (x )\right )+c \left (\coth ^{4}\relax (x )\right )}}\right )}{2 \sqrt {a +b +c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)/(a+b*coth(x)^2+c*coth(x)^4)^(1/2),x)

[Out]

1/2/(a+b+c)^(1/2)*arctanh(1/2*(b*coth(x)^2+2*c*coth(x)^2+2*a+b)/(a+b+c)^(1/2)/(a+b*coth(x)^2+c*coth(x)^4)^(1/2
))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\coth \relax (x)}{\sqrt {c \coth \relax (x)^{4} + b \coth \relax (x)^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)/(a+b*coth(x)^2+c*coth(x)^4)^(1/2),x, algorithm="maxima")

[Out]

integrate(coth(x)/sqrt(c*coth(x)^4 + b*coth(x)^2 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {\mathrm {coth}\relax (x)}{\sqrt {c\,{\mathrm {coth}\relax (x)}^4+b\,{\mathrm {coth}\relax (x)}^2+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)/(a + b*coth(x)^2 + c*coth(x)^4)^(1/2),x)

[Out]

int(coth(x)/(a + b*coth(x)^2 + c*coth(x)^4)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\coth {\relax (x )}}{\sqrt {a + b \coth ^{2}{\relax (x )} + c \coth ^{4}{\relax (x )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)/(a+b*coth(x)**2+c*coth(x)**4)**(1/2),x)

[Out]

Integral(coth(x)/sqrt(a + b*coth(x)**2 + c*coth(x)**4), x)

________________________________________________________________________________________