3.14 \(\int \frac {1}{(b \coth (c+d x))^{4/3}} \, dx\)

Optimal. Leaf size=238 \[ -\frac {\log \left (b^{2/3}-\sqrt [3]{b} \sqrt [3]{b \coth (c+d x)}+(b \coth (c+d x))^{2/3}\right )}{4 b^{4/3} d}+\frac {\log \left (b^{2/3}+\sqrt [3]{b} \sqrt [3]{b \coth (c+d x)}+(b \coth (c+d x))^{2/3}\right )}{4 b^{4/3} d}+\frac {\sqrt {3} \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}}{\sqrt {3}}\right )}{2 b^{4/3} d}-\frac {\sqrt {3} \tan ^{-1}\left (\frac {\frac {2 \sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}+1}{\sqrt {3}}\right )}{2 b^{4/3} d}+\frac {\tanh ^{-1}\left (\frac {\sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}\right )}{b^{4/3} d}-\frac {3}{b d \sqrt [3]{b \coth (c+d x)}} \]

[Out]

arctanh((b*coth(d*x+c))^(1/3)/b^(1/3))/b^(4/3)/d-3/b/d/(b*coth(d*x+c))^(1/3)-1/4*ln(b^(2/3)-b^(1/3)*(b*coth(d*
x+c))^(1/3)+(b*coth(d*x+c))^(2/3))/b^(4/3)/d+1/4*ln(b^(2/3)+b^(1/3)*(b*coth(d*x+c))^(1/3)+(b*coth(d*x+c))^(2/3
))/b^(4/3)/d+1/2*arctan(1/3*(1-2*(b*coth(d*x+c))^(1/3)/b^(1/3))*3^(1/2))*3^(1/2)/b^(4/3)/d-1/2*arctan(1/3*(1+2
*(b*coth(d*x+c))^(1/3)/b^(1/3))*3^(1/2))*3^(1/2)/b^(4/3)/d

________________________________________________________________________________________

Rubi [A]  time = 0.32, antiderivative size = 238, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.750, Rules used = {3474, 3476, 329, 296, 634, 618, 204, 628, 206} \[ -\frac {\log \left (b^{2/3}-\sqrt [3]{b} \sqrt [3]{b \coth (c+d x)}+(b \coth (c+d x))^{2/3}\right )}{4 b^{4/3} d}+\frac {\log \left (b^{2/3}+\sqrt [3]{b} \sqrt [3]{b \coth (c+d x)}+(b \coth (c+d x))^{2/3}\right )}{4 b^{4/3} d}+\frac {\sqrt {3} \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}}{\sqrt {3}}\right )}{2 b^{4/3} d}-\frac {\sqrt {3} \tan ^{-1}\left (\frac {\frac {2 \sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}+1}{\sqrt {3}}\right )}{2 b^{4/3} d}+\frac {\tanh ^{-1}\left (\frac {\sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}\right )}{b^{4/3} d}-\frac {3}{b d \sqrt [3]{b \coth (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(b*Coth[c + d*x])^(-4/3),x]

[Out]

(Sqrt[3]*ArcTan[(1 - (2*(b*Coth[c + d*x])^(1/3))/b^(1/3))/Sqrt[3]])/(2*b^(4/3)*d) - (Sqrt[3]*ArcTan[(1 + (2*(b
*Coth[c + d*x])^(1/3))/b^(1/3))/Sqrt[3]])/(2*b^(4/3)*d) + ArcTanh[(b*Coth[c + d*x])^(1/3)/b^(1/3)]/(b^(4/3)*d)
 - 3/(b*d*(b*Coth[c + d*x])^(1/3)) - Log[b^(2/3) - b^(1/3)*(b*Coth[c + d*x])^(1/3) + (b*Coth[c + d*x])^(2/3)]/
(4*b^(4/3)*d) + Log[b^(2/3) + b^(1/3)*(b*Coth[c + d*x])^(1/3) + (b*Coth[c + d*x])^(2/3)]/(4*b^(4/3)*d)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 296

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator[Rt[-(a/b), n]], s = Denominator[Rt
[-(a/b), n]], k, u}, Simp[u = Int[(r*Cos[(2*k*m*Pi)/n] - s*Cos[(2*k*(m + 1)*Pi)/n]*x)/(r^2 - 2*r*s*Cos[(2*k*Pi
)/n]*x + s^2*x^2), x] + Int[(r*Cos[(2*k*m*Pi)/n] + s*Cos[(2*k*(m + 1)*Pi)/n]*x)/(r^2 + 2*r*s*Cos[(2*k*Pi)/n]*x
 + s^2*x^2), x]; (2*r^(m + 2)*Int[1/(r^2 - s^2*x^2), x])/(a*n*s^m) + Dist[(2*r^(m + 1))/(a*n*s^m), Sum[u, {k,
1, (n - 2)/4}], x], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && NegQ[a/b]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 3474

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)), x] - Dist[
1/b^2, Int[(b*Tan[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {1}{(b \coth (c+d x))^{4/3}} \, dx &=-\frac {3}{b d \sqrt [3]{b \coth (c+d x)}}+\frac {\int (b \coth (c+d x))^{2/3} \, dx}{b^2}\\ &=-\frac {3}{b d \sqrt [3]{b \coth (c+d x)}}-\frac {\operatorname {Subst}\left (\int \frac {x^{2/3}}{-b^2+x^2} \, dx,x,b \coth (c+d x)\right )}{b d}\\ &=-\frac {3}{b d \sqrt [3]{b \coth (c+d x)}}-\frac {3 \operatorname {Subst}\left (\int \frac {x^4}{-b^2+x^6} \, dx,x,\sqrt [3]{b \coth (c+d x)}\right )}{b d}\\ &=-\frac {3}{b d \sqrt [3]{b \coth (c+d x)}}+\frac {\operatorname {Subst}\left (\int \frac {-\frac {\sqrt [3]{b}}{2}-\frac {x}{2}}{b^{2/3}-\sqrt [3]{b} x+x^2} \, dx,x,\sqrt [3]{b \coth (c+d x)}\right )}{b^{4/3} d}+\frac {\operatorname {Subst}\left (\int \frac {-\frac {\sqrt [3]{b}}{2}+\frac {x}{2}}{b^{2/3}+\sqrt [3]{b} x+x^2} \, dx,x,\sqrt [3]{b \coth (c+d x)}\right )}{b^{4/3} d}+\frac {\operatorname {Subst}\left (\int \frac {1}{b^{2/3}-x^2} \, dx,x,\sqrt [3]{b \coth (c+d x)}\right )}{b d}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}\right )}{b^{4/3} d}-\frac {3}{b d \sqrt [3]{b \coth (c+d x)}}-\frac {\operatorname {Subst}\left (\int \frac {-\sqrt [3]{b}+2 x}{b^{2/3}-\sqrt [3]{b} x+x^2} \, dx,x,\sqrt [3]{b \coth (c+d x)}\right )}{4 b^{4/3} d}+\frac {\operatorname {Subst}\left (\int \frac {\sqrt [3]{b}+2 x}{b^{2/3}+\sqrt [3]{b} x+x^2} \, dx,x,\sqrt [3]{b \coth (c+d x)}\right )}{4 b^{4/3} d}-\frac {3 \operatorname {Subst}\left (\int \frac {1}{b^{2/3}-\sqrt [3]{b} x+x^2} \, dx,x,\sqrt [3]{b \coth (c+d x)}\right )}{4 b d}-\frac {3 \operatorname {Subst}\left (\int \frac {1}{b^{2/3}+\sqrt [3]{b} x+x^2} \, dx,x,\sqrt [3]{b \coth (c+d x)}\right )}{4 b d}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}\right )}{b^{4/3} d}-\frac {3}{b d \sqrt [3]{b \coth (c+d x)}}-\frac {\log \left (b^{2/3}-\sqrt [3]{b} \sqrt [3]{b \coth (c+d x)}+(b \coth (c+d x))^{2/3}\right )}{4 b^{4/3} d}+\frac {\log \left (b^{2/3}+\sqrt [3]{b} \sqrt [3]{b \coth (c+d x)}+(b \coth (c+d x))^{2/3}\right )}{4 b^{4/3} d}-\frac {3 \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-\frac {2 \sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}\right )}{2 b^{4/3} d}+\frac {3 \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+\frac {2 \sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}\right )}{2 b^{4/3} d}\\ &=\frac {\sqrt {3} \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}}{\sqrt {3}}\right )}{2 b^{4/3} d}-\frac {\sqrt {3} \tan ^{-1}\left (\frac {1+\frac {2 \sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}}{\sqrt {3}}\right )}{2 b^{4/3} d}+\frac {\tanh ^{-1}\left (\frac {\sqrt [3]{b \coth (c+d x)}}{\sqrt [3]{b}}\right )}{b^{4/3} d}-\frac {3}{b d \sqrt [3]{b \coth (c+d x)}}-\frac {\log \left (b^{2/3}-\sqrt [3]{b} \sqrt [3]{b \coth (c+d x)}+(b \coth (c+d x))^{2/3}\right )}{4 b^{4/3} d}+\frac {\log \left (b^{2/3}+\sqrt [3]{b} \sqrt [3]{b \coth (c+d x)}+(b \coth (c+d x))^{2/3}\right )}{4 b^{4/3} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.06, size = 36, normalized size = 0.15 \[ -\frac {3 \, _2F_1\left (-\frac {1}{6},1;\frac {5}{6};\coth ^2(c+d x)\right )}{b d \sqrt [3]{b \coth (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Coth[c + d*x])^(-4/3),x]

[Out]

(-3*Hypergeometric2F1[-1/6, 1, 5/6, Coth[c + d*x]^2])/(b*d*(b*Coth[c + d*x])^(1/3))

________________________________________________________________________________________

fricas [B]  time = 0.51, size = 3348, normalized size = 14.07 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*coth(d*x+c))^(4/3),x, algorithm="fricas")

[Out]

[1/4*(sqrt(3)*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + b)*sqrt((-b)^(1/3)/b)
*log(3*b*cosh(d*x + c)^2 + 6*b*cosh(d*x + c)*sinh(d*x + c) + 3*b*sinh(d*x + c)^2 - 3*(cosh(d*x + c)^2 + 2*cosh
(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*(-b)^(2/3)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3) - sqrt(3)*(2*(
cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*(-b)^(2/3)*(b*cosh(d*x + c)/sinh(d*x +
c))^(2/3) + (b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 - b)*(-b)^(1/3) - (b*cosh
(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 - b)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3))*
sqrt((-b)^(1/3)/b) + b) + sqrt(3)*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + b
)*sqrt(-1/b^(2/3))*log(-(2*sqrt(3)*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*b^(
2/3)*(b*cosh(d*x + c)/sinh(d*x + c))^(2/3)*sqrt(-1/b^(2/3)) - b*cosh(d*x + c)^2 - 2*b*cosh(d*x + c)*sinh(d*x +
 c) - b*sinh(d*x + c)^2 - sqrt(3)*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 - b
)*b^(1/3)*sqrt(-1/b^(2/3)) + (sqrt(3)*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2
 - b)*sqrt(-1/b^(2/3)) + 3*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*b^(2/3))*(b
*cosh(d*x + c)/sinh(d*x + c))^(1/3) - 3*b)/(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2)
) + (cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 + 1)*(-b)^(2/3)*log((-b)^(2/3) - (-b)^(
1/3)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(2/3)) - (cosh(d*x + c)^2 + 2*cos
h(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 + 1)*b^(2/3)*log(b^(2/3) - b^(1/3)*(b*cosh(d*x + c)/sinh(d*x + c))^
(1/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(2/3)) - 2*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x
 + c)^2 + 1)*(-b)^(2/3)*log((-b)^(1/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(1/3)) + 2*(cosh(d*x + c)^2 + 2*cosh(
d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 + 1)*b^(2/3)*log(b^(1/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(1/3)) - 1
2*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*(b*cosh(d*x + c)/sinh(d*x + c))^(2/3
))/(b^2*d*cosh(d*x + c)^2 + 2*b^2*d*cosh(d*x + c)*sinh(d*x + c) + b^2*d*sinh(d*x + c)^2 + b^2*d), -1/4*(2*sqrt
(3)*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + b)*sqrt(-(-b)^(1/3)/b)*arctan(-
1/3*sqrt(3)*(-b)^(1/3)*sqrt(-(-b)^(1/3)/b) + 2/3*sqrt(3)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3)*sqrt(-(-b)^(1/3
)/b)) - sqrt(3)*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + b)*sqrt(-1/b^(2/3))
*log(-(2*sqrt(3)*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*b^(2/3)*(b*cosh(d*x +
 c)/sinh(d*x + c))^(2/3)*sqrt(-1/b^(2/3)) - b*cosh(d*x + c)^2 - 2*b*cosh(d*x + c)*sinh(d*x + c) - b*sinh(d*x +
 c)^2 - sqrt(3)*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 - b)*b^(1/3)*sqrt(-1/
b^(2/3)) + (sqrt(3)*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 - b)*sqrt(-1/b^(2
/3)) + 3*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*b^(2/3))*(b*cosh(d*x + c)/sin
h(d*x + c))^(1/3) - 3*b)/(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2)) - (cosh(d*x + c)
^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 + 1)*(-b)^(2/3)*log((-b)^(2/3) - (-b)^(1/3)*(b*cosh(d*x +
 c)/sinh(d*x + c))^(1/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(2/3)) + (cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*
x + c) + sinh(d*x + c)^2 + 1)*b^(2/3)*log(b^(2/3) - b^(1/3)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3) + (b*cosh(d*
x + c)/sinh(d*x + c))^(2/3)) + 2*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 + 1)*(-b)^
(2/3)*log((-b)^(1/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(1/3)) - 2*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x
+ c) + sinh(d*x + c)^2 + 1)*b^(2/3)*log(b^(1/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(1/3)) + 12*(cosh(d*x + c)^2
 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*(b*cosh(d*x + c)/sinh(d*x + c))^(2/3))/(b^2*d*cosh(d*x
 + c)^2 + 2*b^2*d*cosh(d*x + c)*sinh(d*x + c) + b^2*d*sinh(d*x + c)^2 + b^2*d), 1/4*(sqrt(3)*(b*cosh(d*x + c)^
2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + b)*sqrt((-b)^(1/3)/b)*log(3*b*cosh(d*x + c)^2 + 6*b*
cosh(d*x + c)*sinh(d*x + c) + 3*b*sinh(d*x + c)^2 - 3*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(
d*x + c)^2 - 1)*(-b)^(2/3)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3) - sqrt(3)*(2*(cosh(d*x + c)^2 + 2*cosh(d*x +
c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*(-b)^(2/3)*(b*cosh(d*x + c)/sinh(d*x + c))^(2/3) + (b*cosh(d*x + c)^2
+ 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 - b)*(-b)^(1/3) - (b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)
*sinh(d*x + c) + b*sinh(d*x + c)^2 - b)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3))*sqrt((-b)^(1/3)/b) + b) + (cosh
(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 + 1)*(-b)^(2/3)*log((-b)^(2/3) - (-b)^(1/3)*(b*c
osh(d*x + c)/sinh(d*x + c))^(1/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(2/3)) - (cosh(d*x + c)^2 + 2*cosh(d*x + c
)*sinh(d*x + c) + sinh(d*x + c)^2 + 1)*b^(2/3)*log(b^(2/3) - b^(1/3)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3) + (
b*cosh(d*x + c)/sinh(d*x + c))^(2/3)) - 2*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 +
 1)*(-b)^(2/3)*log((-b)^(1/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(1/3)) + 2*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*
sinh(d*x + c) + sinh(d*x + c)^2 + 1)*b^(2/3)*log(b^(1/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(1/3)) - 2*sqrt(3)*
(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + b)*arctan(-1/3*sqrt(3)*(b^(1/3) - 2
*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3))/b^(1/3))/b^(1/3) - 12*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c)
 + sinh(d*x + c)^2 - 1)*(b*cosh(d*x + c)/sinh(d*x + c))^(2/3))/(b^2*d*cosh(d*x + c)^2 + 2*b^2*d*cosh(d*x + c)*
sinh(d*x + c) + b^2*d*sinh(d*x + c)^2 + b^2*d), -1/4*(2*sqrt(3)*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*
x + c) + b*sinh(d*x + c)^2 + b)*sqrt(-(-b)^(1/3)/b)*arctan(-1/3*sqrt(3)*(-b)^(1/3)*sqrt(-(-b)^(1/3)/b) + 2/3*s
qrt(3)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3)*sqrt(-(-b)^(1/3)/b)) - (cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*
x + c) + sinh(d*x + c)^2 + 1)*(-b)^(2/3)*log((-b)^(2/3) - (-b)^(1/3)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3) + (
b*cosh(d*x + c)/sinh(d*x + c))^(2/3)) + (cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 + 1
)*b^(2/3)*log(b^(2/3) - b^(1/3)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(2/3))
 + 2*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 + 1)*(-b)^(2/3)*log((-b)^(1/3) + (b*co
sh(d*x + c)/sinh(d*x + c))^(1/3)) - 2*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 + 1)*
b^(2/3)*log(b^(1/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(1/3)) + 2*sqrt(3)*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c
)*sinh(d*x + c) + b*sinh(d*x + c)^2 + b)*arctan(-1/3*sqrt(3)*(b^(1/3) - 2*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3
))/b^(1/3))/b^(1/3) + 12*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*(b*cosh(d*x +
 c)/sinh(d*x + c))^(2/3))/(b^2*d*cosh(d*x + c)^2 + 2*b^2*d*cosh(d*x + c)*sinh(d*x + c) + b^2*d*sinh(d*x + c)^2
 + b^2*d)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*coth(d*x+c))^(4/3),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Mini
mal poly. in rootof must be fraction free Error: Bad Argument ValueMinimal poly. in rootof must be fraction fr
ee Error: Bad Argument ValueMinimal poly. in rootof must be fraction free Error: Bad Argument ValueMinimal pol
y. in rootof must be fraction free Error: Bad Argument ValueMinimal poly. in rootof must be fraction free Erro
r: Bad Argument ValueMinimal poly. in rootof must be fraction free Error: Bad Argument ValueMinimal poly. in r
ootof must be fraction free Error: Bad Argument ValueMinimal poly. in rootof must be fraction free Error: Bad
Argument ValueMinimal poly. in rootof must be fraction free Error: Bad Argument ValueMinimal poly. in rootof m
ust be fraction free Error: Bad Argument ValueMinimal poly. in rootof must be fraction free Error: Bad Argumen
t ValueMinimal poly. in rootof must be fraction free Error: Bad Argument ValueMinimal poly. in rootof must be
fraction free Error: Bad Argument ValueMinimal poly. in rootof must be fraction free Error: Bad Argument Value
Minimal poly. in rootof must be fraction free Error: Bad Argument ValueMinimal poly. in rootof must be fractio
n free Error: Bad Argument ValueMinimal poly. in rootof must be fraction free Error: Bad Argument ValueMinimal
 poly. in rootof must be fraction free Error: Bad Argument ValueMinimal poly. in rootof must be fraction free
Error: Bad Argument ValueMinimal poly. in rootof must be fraction free Error: Bad Argument ValueMinimal poly.
in rootof must be fraction free Error: Bad Argument ValueMinimal poly. in rootof must be fraction free Error:
Bad Argument ValueMinimal poly. in rootof must be fraction free Error: Bad Argument ValueMinimal poly. in root
of must be fraction free Error: Bad Argument ValueMinimal poly. in rootof must be fraction free Error: Bad Arg
ument ValueMinimal poly. in rootof must be fraction free Error: Bad Argument ValueMinimal poly. in rootof must
 be fraction free Error: Bad Argument ValueMinimal poly. in rootof must be fraction free Error: Bad Argument V
alueUnable to build a single algebraic extension for simplifying.Trying rational simplification only. This mig
ht return a wrong answer if simplifying 0/0!Unable to build a single algebraic extension for simplifying.Tryin
g rational simplification only. This might return a wrong answer if simplifying 0/0!Unable to build a single a
lgebraic extension for simplifying.Trying rational simplification only. This might return a wrong answer if si
mplifying 0/0!Unable to build a single algebraic extension for simplifying.Trying rational simplification only
. This might return a wrong answer if simplifying 0/0!Unable to build a single algebraic extension for simplif
ying.Trying rational simplification only. This might return a wrong answer if simplifying 0/0!Unable to build
a single algebraic extension for simplifying.Trying rational simplification only. This might return a wrong an
swer if simplifying 0/0!Unable to build a single algebraic extension for simplifying.Trying rational simplific
ation only. This might return a wrong answer if simplifying 0/0!Unable to build a single algebraic extension f
or simplifying.Trying rational simplification only. This might return a wrong answer if simplifying 0/0!Unable
 to build a single algebraic extension for simplifying.Trying rational simplification only. This might return
a wrong answer if simplifying 0/0!Unable to build a single algebraic extension for simplifying.Trying rational
 simplification only. This might return a wrong answer if simplifying 0/0!Unable to build a single algebraic e
xtension for simplifying.Trying rational simplification only. This might return a wrong answer if simplifying
0/0!Unable to build a single algebraic extension for simplifying.Trying rational simplification only. This mig
ht return a wrong answer if simplifying 0/0!Unable to build a single algebraic extension for simplifying.Tryin
g rational simplification only. This might return a wrong answer if simplifying 0/0!Unable to build a single a
lgebraic extension for simplifying.Trying rational simplification only. This might return a wrong answer if si
mplifying 0/0!Unable to build a single algebraic extension for simplifying.Trying rational simplification only
. This might return a wrong answer if simplifying 0/0!Unable to build a single algebraic extension for simplif
ying.Trying rational simplification only. This might return a wrong answer if simplifying 0/0!Unable to build
a single algebraic extension for simplifying.Trying rational simplification only. This might return a wrong an
swer if simplifying 0/0!Unable to build a single algebraic extension for simplifying.Trying rational simplific
ation only. This might return a wrong answer if simplifying 0/0!Unable to build a single algebraic extension f
or simplifying.Trying rational simplification only. This might return a wrong answer if simplifying 0/0!Unable
 to build a single algebraic extension for simplifying.Trying rational simplification only. This might return
a wrong answer if simplifying 0/0!Unable to build a single algebraic extension for simplifying.Trying rational
 simplification only. This might return a wrong answer if simplifying 0/0!Unable to build a single algebraic e
xtension for simplifying.Trying rational simplification only. This might return a wrong answer if simplifying
0/0!Unable to build a single algebraic extension for simplifying.Trying rational simplification only. This mig
ht return a wrong answer if simplifying 0/0!Unable to build a single algebraic extension for simplifying.Tryin
g rational simplification only. This might return a wrong answer if simplifying 0/0!Unable to build a single a
lgebraic extension for simplifying.Trying rational simplification only. This might return a wrong answer if si
mplifying 0/0!Unable to build a single algebraic extension for simplifying.Trying rational simplification only
. This might return a wrong answer if simplifying 0/0!Unable to build a single algebraic extension for simplif
ying.Trying rational simplification only. This might return a wrong answer if simplifying 0/0!Unable to build
a single algebraic extension for simplifying.Trying rational simplification only. This might return a wrong an
swer if simplifying 0/0!Unable to build a single algebraic extension for simplifying.Trying rational simplific
ation only. This might return a wrong answer if simplifying 0/0!Unable to build a single algebraic extension f
or simplifying.Trying rational simplification only. This might return a wrong answer if simplifying 0/0!Unable
 to build a single algebraic extension for simplifying.Trying rational simplification only. This might return
a wrong answer if simplifying 0/0!Unable to build a single algebraic extension for simplifying.Trying rational
 simplification only. This might return a wrong answer if simplifying 0/0!Unable to build a single algebraic e
xtension for simplifying.Trying rational simplification only. This might return a wrong answer if simplifying
0/0!Unable to build a single algebraic extension for simplifying.Trying rational simplification only. This mig
ht return a wrong answer if simplifying 0/0!Unable to build a single algebraic extension for simplifying.Tryin
g rational simplification only. This might return a wrong answer if simplifying 0/0!Unable to build a single a
lgebraic extension for simplifying.Trying rational simplification only. This might return a wrong answer if si
mplifying 0/0!Unable to build a single algebraic extension for simplifying.Trying rational simplification only
. This might return a wrong answer if simplifying 0/0!Unable to build a single algebraic extension for simplif
ying.Trying rational simplification only. This might return a wrong answer if simplifying 0/0!Unable to build
a single algebraic extension for simplifying.Trying rational simplification only. This might return a wrong an
swer if simplifying 0/0!Unable to build a single algebraic extension for simplifying.Trying rational simplific
ation only. This might return a wrong answer if simplifying 0/0!Unable to build a single algebraic extension f
or simplifying.Trying rational simplification only. This might return a wrong answer if simplifying 0/0!Unable
 to build a single algebraic extension for simplifying.Trying rational simplification only. This might return
a wrong answer if simplifying 0/0!Unable to build a single algebraic extension for simplifying.Trying rational
 simplification only. This might return a wrong answer if simplifying 0/0!Evaluation time: 2.15Done

________________________________________________________________________________________

maple [A]  time = 0.10, size = 211, normalized size = 0.89 \[ -\frac {3}{b d \left (b \coth \left (d x +c \right )\right )^{\frac {1}{3}}}-\frac {\ln \left (\left (b \coth \left (d x +c \right )\right )^{\frac {1}{3}}-b^{\frac {1}{3}}\right )}{2 b^{\frac {4}{3}} d}+\frac {\ln \left (b^{\frac {2}{3}}+b^{\frac {1}{3}} \left (b \coth \left (d x +c \right )\right )^{\frac {1}{3}}+\left (b \coth \left (d x +c \right )\right )^{\frac {2}{3}}\right )}{4 b^{\frac {4}{3}} d}-\frac {\arctan \left (\frac {\left (1+\frac {2 \left (b \coth \left (d x +c \right )\right )^{\frac {1}{3}}}{b^{\frac {1}{3}}}\right ) \sqrt {3}}{3}\right ) \sqrt {3}}{2 b^{\frac {4}{3}} d}+\frac {\ln \left (\left (b \coth \left (d x +c \right )\right )^{\frac {1}{3}}+b^{\frac {1}{3}}\right )}{2 b^{\frac {4}{3}} d}-\frac {\ln \left (b^{\frac {2}{3}}-b^{\frac {1}{3}} \left (b \coth \left (d x +c \right )\right )^{\frac {1}{3}}+\left (b \coth \left (d x +c \right )\right )^{\frac {2}{3}}\right )}{4 b^{\frac {4}{3}} d}-\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \left (b \coth \left (d x +c \right )\right )^{\frac {1}{3}}}{b^{\frac {1}{3}}}-1\right )}{3}\right )}{2 b^{\frac {4}{3}} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*coth(d*x+c))^(4/3),x)

[Out]

-3/b/d/(b*coth(d*x+c))^(1/3)-1/2/b^(4/3)/d*ln((b*coth(d*x+c))^(1/3)-b^(1/3))+1/4*ln(b^(2/3)+b^(1/3)*(b*coth(d*
x+c))^(1/3)+(b*coth(d*x+c))^(2/3))/b^(4/3)/d-1/2*arctan(1/3*(1+2*(b*coth(d*x+c))^(1/3)/b^(1/3))*3^(1/2))*3^(1/
2)/b^(4/3)/d+1/2/b^(4/3)/d*ln((b*coth(d*x+c))^(1/3)+b^(1/3))-1/4*ln(b^(2/3)-b^(1/3)*(b*coth(d*x+c))^(1/3)+(b*c
oth(d*x+c))^(2/3))/b^(4/3)/d-1/2/b^(4/3)/d*3^(1/2)*arctan(1/3*3^(1/2)*(2*(b*coth(d*x+c))^(1/3)/b^(1/3)-1))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (b \coth \left (d x + c\right )\right )^{\frac {4}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*coth(d*x+c))^(4/3),x, algorithm="maxima")

[Out]

integrate((b*coth(d*x + c))^(-4/3), x)

________________________________________________________________________________________

mupad [B]  time = 1.42, size = 165, normalized size = 0.69 \[ -\frac {3}{b\,d\,{\left (b\,\mathrm {coth}\left (c+d\,x\right )\right )}^{1/3}}-\frac {\mathrm {atan}\left (\frac {{\left (b\,\mathrm {coth}\left (c+d\,x\right )\right )}^{1/3}\,1{}\mathrm {i}}{b^{1/3}}\right )\,1{}\mathrm {i}}{b^{4/3}\,d}-\frac {\mathrm {atan}\left (\frac {b^9\,d^4\,{\left (b\,\mathrm {coth}\left (c+d\,x\right )\right )}^{1/3}\,486{}\mathrm {i}}{243\,b^{28/3}\,d^4-\sqrt {3}\,b^{28/3}\,d^4\,243{}\mathrm {i}}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{2\,b^{4/3}\,d}+\frac {\mathrm {atan}\left (\frac {b^9\,d^4\,{\left (b\,\mathrm {coth}\left (c+d\,x\right )\right )}^{1/3}\,486{}\mathrm {i}}{243\,b^{28/3}\,d^4+\sqrt {3}\,b^{28/3}\,d^4\,243{}\mathrm {i}}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{2\,b^{4/3}\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*coth(c + d*x))^(4/3),x)

[Out]

(atan((b^9*d^4*(b*coth(c + d*x))^(1/3)*486i)/(243*b^(28/3)*d^4 + 3^(1/2)*b^(28/3)*d^4*243i))*(3^(1/2)*1i - 1)*
1i)/(2*b^(4/3)*d) - (atan(((b*coth(c + d*x))^(1/3)*1i)/b^(1/3))*1i)/(b^(4/3)*d) - (atan((b^9*d^4*(b*coth(c + d
*x))^(1/3)*486i)/(243*b^(28/3)*d^4 - 3^(1/2)*b^(28/3)*d^4*243i))*(3^(1/2)*1i + 1)*1i)/(2*b^(4/3)*d) - 3/(b*d*(
b*coth(c + d*x))^(1/3))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (b \coth {\left (c + d x \right )}\right )^{\frac {4}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*coth(d*x+c))**(4/3),x)

[Out]

Integral((b*coth(c + d*x))**(-4/3), x)

________________________________________________________________________________________