3.213 \(\int e^{a+b x} \coth ^4(a+b x) \, dx\)

Optimal. Leaf size=113 \[ \frac {e^{a+b x}}{b}+\frac {5 e^{a+b x}}{b \left (1-e^{2 a+2 b x}\right )}-\frac {14 e^{a+b x}}{3 b \left (1-e^{2 a+2 b x}\right )^2}+\frac {8 e^{a+b x}}{3 b \left (1-e^{2 a+2 b x}\right )^3}-\frac {3 \tanh ^{-1}\left (e^{a+b x}\right )}{b} \]

[Out]

exp(b*x+a)/b+8/3*exp(b*x+a)/b/(1-exp(2*b*x+2*a))^3-14/3*exp(b*x+a)/b/(1-exp(2*b*x+2*a))^2+5*exp(b*x+a)/b/(1-ex
p(2*b*x+2*a))-3*arctanh(exp(b*x+a))/b

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {2282, 390, 1258, 1157, 385, 206} \[ \frac {e^{a+b x}}{b}+\frac {5 e^{a+b x}}{b \left (1-e^{2 a+2 b x}\right )}-\frac {14 e^{a+b x}}{3 b \left (1-e^{2 a+2 b x}\right )^2}+\frac {8 e^{a+b x}}{3 b \left (1-e^{2 a+2 b x}\right )^3}-\frac {3 \tanh ^{-1}\left (e^{a+b x}\right )}{b} \]

Antiderivative was successfully verified.

[In]

Int[E^(a + b*x)*Coth[a + b*x]^4,x]

[Out]

E^(a + b*x)/b + (8*E^(a + b*x))/(3*b*(1 - E^(2*a + 2*b*x))^3) - (14*E^(a + b*x))/(3*b*(1 - E^(2*a + 2*b*x))^2)
 + (5*E^(a + b*x))/(b*(1 - E^(2*a + 2*b*x))) - (3*ArcTanh[E^(a + b*x)])/b

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d)*x*(a + b*x^n)^(p +
 1))/(a*b*n*(p + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /
; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 390

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Int[PolynomialDivide[(a + b*x^n)
^p, (c + d*x^n)^(-q), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IGtQ[p, 0] && ILt
Q[q, 0] && GeQ[p, -q]

Rule 1157

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{Qx = PolynomialQ
uotient[(a + b*x^2 + c*x^4)^p, d + e*x^2, x], R = Coeff[PolynomialRemainder[(a + b*x^2 + c*x^4)^p, d + e*x^2,
x], x, 0]}, -Simp[(R*x*(d + e*x^2)^(q + 1))/(2*d*(q + 1)), x] + Dist[1/(2*d*(q + 1)), Int[(d + e*x^2)^(q + 1)*
ExpandToSum[2*d*(q + 1)*Qx + R*(2*q + 3), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && N
eQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[p, 0] && LtQ[q, -1]

Rule 1258

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[((-d)^(m/2 - 1)*(c*d^
2 + a*e^2)^p*x*(d + e*x^2)^(q + 1))/(2*e^(2*p + m/2)*(q + 1)), x] + Dist[1/(2*e^(2*p + m/2)*(q + 1)), Int[(d +
 e*x^2)^(q + 1)*ExpandToSum[Together[(1*(2*e^(2*p + m/2)*(q + 1)*x^m*(a + c*x^4)^p - (-d)^(m/2 - 1)*(c*d^2 + a
*e^2)^p*(d + e*(2*q + 3)*x^2)))/(d + e*x^2)], x], x], x] /; FreeQ[{a, c, d, e}, x] && IGtQ[p, 0] && ILtQ[q, -1
] && IGtQ[m/2, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

\begin {align*} \int e^{a+b x} \coth ^4(a+b x) \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (1+x^2\right )^4}{\left (1-x^2\right )^4} \, dx,x,e^{a+b x}\right )}{b}\\ &=\frac {\operatorname {Subst}\left (\int \left (1+\frac {8 x^2 \left (1+x^4\right )}{\left (1-x^2\right )^4}\right ) \, dx,x,e^{a+b x}\right )}{b}\\ &=\frac {e^{a+b x}}{b}+\frac {8 \operatorname {Subst}\left (\int \frac {x^2 \left (1+x^4\right )}{\left (1-x^2\right )^4} \, dx,x,e^{a+b x}\right )}{b}\\ &=\frac {e^{a+b x}}{b}+\frac {8 e^{a+b x}}{3 b \left (1-e^{2 a+2 b x}\right )^3}+\frac {4 \operatorname {Subst}\left (\int \frac {-2-6 x^2-6 x^4}{\left (1-x^2\right )^3} \, dx,x,e^{a+b x}\right )}{3 b}\\ &=\frac {e^{a+b x}}{b}+\frac {8 e^{a+b x}}{3 b \left (1-e^{2 a+2 b x}\right )^3}-\frac {14 e^{a+b x}}{3 b \left (1-e^{2 a+2 b x}\right )^2}-\frac {\operatorname {Subst}\left (\int \frac {-6-24 x^2}{\left (1-x^2\right )^2} \, dx,x,e^{a+b x}\right )}{3 b}\\ &=\frac {e^{a+b x}}{b}+\frac {8 e^{a+b x}}{3 b \left (1-e^{2 a+2 b x}\right )^3}-\frac {14 e^{a+b x}}{3 b \left (1-e^{2 a+2 b x}\right )^2}+\frac {5 e^{a+b x}}{b \left (1-e^{2 a+2 b x}\right )}-\frac {3 \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,e^{a+b x}\right )}{b}\\ &=\frac {e^{a+b x}}{b}+\frac {8 e^{a+b x}}{3 b \left (1-e^{2 a+2 b x}\right )^3}-\frac {14 e^{a+b x}}{3 b \left (1-e^{2 a+2 b x}\right )^2}+\frac {5 e^{a+b x}}{b \left (1-e^{2 a+2 b x}\right )}-\frac {3 \tanh ^{-1}\left (e^{a+b x}\right )}{b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 10.12, size = 115, normalized size = 1.02 \[ \frac {-24 e^{a+b x}+50 e^{3 (a+b x)}-48 e^{5 (a+b x)}+6 e^{7 (a+b x)}+9 \left (e^{2 (a+b x)}-1\right )^3 \log \left (1-e^{a+b x}\right )-9 \left (e^{2 (a+b x)}-1\right )^3 \log \left (e^{a+b x}+1\right )}{6 b \left (e^{2 (a+b x)}-1\right )^3} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(a + b*x)*Coth[a + b*x]^4,x]

[Out]

(-24*E^(a + b*x) + 50*E^(3*(a + b*x)) - 48*E^(5*(a + b*x)) + 6*E^(7*(a + b*x)) + 9*(-1 + E^(2*(a + b*x)))^3*Lo
g[1 - E^(a + b*x)] - 9*(-1 + E^(2*(a + b*x)))^3*Log[1 + E^(a + b*x)])/(6*b*(-1 + E^(2*(a + b*x)))^3)

________________________________________________________________________________________

fricas [B]  time = 0.52, size = 796, normalized size = 7.04 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(b*x+a)*coth(b*x+a)^4,x, algorithm="fricas")

[Out]

1/6*(6*cosh(b*x + a)^7 + 42*cosh(b*x + a)*sinh(b*x + a)^6 + 6*sinh(b*x + a)^7 + 6*(21*cosh(b*x + a)^2 - 8)*sin
h(b*x + a)^5 - 48*cosh(b*x + a)^5 + 30*(7*cosh(b*x + a)^3 - 8*cosh(b*x + a))*sinh(b*x + a)^4 + 10*(21*cosh(b*x
 + a)^4 - 48*cosh(b*x + a)^2 + 5)*sinh(b*x + a)^3 + 50*cosh(b*x + a)^3 + 6*(21*cosh(b*x + a)^5 - 80*cosh(b*x +
 a)^3 + 25*cosh(b*x + a))*sinh(b*x + a)^2 - 9*(cosh(b*x + a)^6 + 6*cosh(b*x + a)*sinh(b*x + a)^5 + sinh(b*x +
a)^6 + 3*(5*cosh(b*x + a)^2 - 1)*sinh(b*x + a)^4 - 3*cosh(b*x + a)^4 + 4*(5*cosh(b*x + a)^3 - 3*cosh(b*x + a))
*sinh(b*x + a)^3 + 3*(5*cosh(b*x + a)^4 - 6*cosh(b*x + a)^2 + 1)*sinh(b*x + a)^2 + 3*cosh(b*x + a)^2 + 6*(cosh
(b*x + a)^5 - 2*cosh(b*x + a)^3 + cosh(b*x + a))*sinh(b*x + a) - 1)*log(cosh(b*x + a) + sinh(b*x + a) + 1) + 9
*(cosh(b*x + a)^6 + 6*cosh(b*x + a)*sinh(b*x + a)^5 + sinh(b*x + a)^6 + 3*(5*cosh(b*x + a)^2 - 1)*sinh(b*x + a
)^4 - 3*cosh(b*x + a)^4 + 4*(5*cosh(b*x + a)^3 - 3*cosh(b*x + a))*sinh(b*x + a)^3 + 3*(5*cosh(b*x + a)^4 - 6*c
osh(b*x + a)^2 + 1)*sinh(b*x + a)^2 + 3*cosh(b*x + a)^2 + 6*(cosh(b*x + a)^5 - 2*cosh(b*x + a)^3 + cosh(b*x +
a))*sinh(b*x + a) - 1)*log(cosh(b*x + a) + sinh(b*x + a) - 1) + 6*(7*cosh(b*x + a)^6 - 40*cosh(b*x + a)^4 + 25
*cosh(b*x + a)^2 - 4)*sinh(b*x + a) - 24*cosh(b*x + a))/(b*cosh(b*x + a)^6 + 6*b*cosh(b*x + a)*sinh(b*x + a)^5
 + b*sinh(b*x + a)^6 - 3*b*cosh(b*x + a)^4 + 3*(5*b*cosh(b*x + a)^2 - b)*sinh(b*x + a)^4 + 4*(5*b*cosh(b*x + a
)^3 - 3*b*cosh(b*x + a))*sinh(b*x + a)^3 + 3*b*cosh(b*x + a)^2 + 3*(5*b*cosh(b*x + a)^4 - 6*b*cosh(b*x + a)^2
+ b)*sinh(b*x + a)^2 + 6*(b*cosh(b*x + a)^5 - 2*b*cosh(b*x + a)^3 + b*cosh(b*x + a))*sinh(b*x + a) - b)

________________________________________________________________________________________

giac [A]  time = 0.14, size = 83, normalized size = 0.73 \[ -\frac {\frac {2 \, {\left (15 \, e^{\left (5 \, b x + 5 \, a\right )} - 16 \, e^{\left (3 \, b x + 3 \, a\right )} + 9 \, e^{\left (b x + a\right )}\right )}}{{\left (e^{\left (2 \, b x + 2 \, a\right )} - 1\right )}^{3}} - 6 \, e^{\left (b x + a\right )} + 9 \, \log \left (e^{\left (b x + a\right )} + 1\right ) - 9 \, \log \left ({\left | e^{\left (b x + a\right )} - 1 \right |}\right )}{6 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(b*x+a)*coth(b*x+a)^4,x, algorithm="giac")

[Out]

-1/6*(2*(15*e^(5*b*x + 5*a) - 16*e^(3*b*x + 3*a) + 9*e^(b*x + a))/(e^(2*b*x + 2*a) - 1)^3 - 6*e^(b*x + a) + 9*
log(e^(b*x + a) + 1) - 9*log(abs(e^(b*x + a) - 1)))/b

________________________________________________________________________________________

maple [A]  time = 0.27, size = 107, normalized size = 0.95 \[ \frac {\frac {\cosh ^{3}\left (b x +a \right )}{\sinh \left (b x +a \right )^{2}}-\frac {3 \cosh \left (b x +a \right )}{\sinh \left (b x +a \right )^{2}}+\frac {3 \,\mathrm {csch}\left (b x +a \right ) \coth \left (b x +a \right )}{2}-3 \arctanh \left ({\mathrm e}^{b x +a}\right )+\frac {\cosh ^{4}\left (b x +a \right )}{\sinh \left (b x +a \right )^{3}}-\frac {4 \left (\cosh ^{2}\left (b x +a \right )\right )}{\sinh \left (b x +a \right )^{3}}+\frac {8}{3 \sinh \left (b x +a \right )^{3}}}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(b*x+a)*coth(b*x+a)^4,x)

[Out]

1/b*(cosh(b*x+a)^3/sinh(b*x+a)^2-3/sinh(b*x+a)^2*cosh(b*x+a)+3/2*csch(b*x+a)*coth(b*x+a)-3*arctanh(exp(b*x+a))
+cosh(b*x+a)^4/sinh(b*x+a)^3-4/sinh(b*x+a)^3*cosh(b*x+a)^2+8/3/sinh(b*x+a)^3)

________________________________________________________________________________________

maxima [A]  time = 0.32, size = 110, normalized size = 0.97 \[ \frac {e^{\left (b x + a\right )}}{b} - \frac {3 \, \log \left (e^{\left (b x + a\right )} + 1\right )}{2 \, b} + \frac {3 \, \log \left (e^{\left (b x + a\right )} - 1\right )}{2 \, b} - \frac {15 \, e^{\left (5 \, b x + 5 \, a\right )} - 16 \, e^{\left (3 \, b x + 3 \, a\right )} + 9 \, e^{\left (b x + a\right )}}{3 \, b {\left (e^{\left (6 \, b x + 6 \, a\right )} - 3 \, e^{\left (4 \, b x + 4 \, a\right )} + 3 \, e^{\left (2 \, b x + 2 \, a\right )} - 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(b*x+a)*coth(b*x+a)^4,x, algorithm="maxima")

[Out]

e^(b*x + a)/b - 3/2*log(e^(b*x + a) + 1)/b + 3/2*log(e^(b*x + a) - 1)/b - 1/3*(15*e^(5*b*x + 5*a) - 16*e^(3*b*
x + 3*a) + 9*e^(b*x + a))/(b*(e^(6*b*x + 6*a) - 3*e^(4*b*x + 4*a) + 3*e^(2*b*x + 2*a) - 1))

________________________________________________________________________________________

mupad [B]  time = 0.10, size = 160, normalized size = 1.42 \[ \frac {{\mathrm {e}}^{a+b\,x}}{b}-\frac {3\,\mathrm {atan}\left (\frac {{\mathrm {e}}^{b\,x}\,{\mathrm {e}}^a\,\sqrt {-b^2}}{b}\right )}{\sqrt {-b^2}}-\frac {\frac {4\,{\mathrm {e}}^{a+b\,x}}{3\,b}+\frac {4\,{\mathrm {e}}^{5\,a+5\,b\,x}}{3\,b}}{3\,{\mathrm {e}}^{2\,a+2\,b\,x}-3\,{\mathrm {e}}^{4\,a+4\,b\,x}+{\mathrm {e}}^{6\,a+6\,b\,x}-1}-\frac {2\,{\mathrm {e}}^{a+b\,x}}{b\,\left ({\mathrm {e}}^{4\,a+4\,b\,x}-2\,{\mathrm {e}}^{2\,a+2\,b\,x}+1\right )}-\frac {11\,{\mathrm {e}}^{a+b\,x}}{3\,b\,\left ({\mathrm {e}}^{2\,a+2\,b\,x}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(a + b*x)^4*exp(a + b*x),x)

[Out]

exp(a + b*x)/b - (3*atan((exp(b*x)*exp(a)*(-b^2)^(1/2))/b))/(-b^2)^(1/2) - ((4*exp(a + b*x))/(3*b) + (4*exp(5*
a + 5*b*x))/(3*b))/(3*exp(2*a + 2*b*x) - 3*exp(4*a + 4*b*x) + exp(6*a + 6*b*x) - 1) - (2*exp(a + b*x))/(b*(exp
(4*a + 4*b*x) - 2*exp(2*a + 2*b*x) + 1)) - (11*exp(a + b*x))/(3*b*(exp(2*a + 2*b*x) - 1))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ e^{a} \int e^{b x} \coth ^{4}{\left (a + b x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(b*x+a)*coth(b*x+a)**4,x)

[Out]

exp(a)*Integral(exp(b*x)*coth(a + b*x)**4, x)

________________________________________________________________________________________