3.210 \(\int e^{a+b x} \coth (a+b x) \, dx\)

Optimal. Leaf size=25 \[ \frac {e^{a+b x}}{b}-\frac {2 \tanh ^{-1}\left (e^{a+b x}\right )}{b} \]

[Out]

exp(b*x+a)/b-2*arctanh(exp(b*x+a))/b

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {2282, 388, 206} \[ \frac {e^{a+b x}}{b}-\frac {2 \tanh ^{-1}\left (e^{a+b x}\right )}{b} \]

Antiderivative was successfully verified.

[In]

Int[E^(a + b*x)*Coth[a + b*x],x]

[Out]

E^(a + b*x)/b - (2*ArcTanh[E^(a + b*x)])/b

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

\begin {align*} \int e^{a+b x} \coth (a+b x) \, dx &=\frac {\operatorname {Subst}\left (\int \frac {-1-x^2}{1-x^2} \, dx,x,e^{a+b x}\right )}{b}\\ &=\frac {e^{a+b x}}{b}-\frac {2 \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,e^{a+b x}\right )}{b}\\ &=\frac {e^{a+b x}}{b}-\frac {2 \tanh ^{-1}\left (e^{a+b x}\right )}{b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 22, normalized size = 0.88 \[ \frac {e^{a+b x}-2 \tanh ^{-1}\left (e^{a+b x}\right )}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(a + b*x)*Coth[a + b*x],x]

[Out]

(E^(a + b*x) - 2*ArcTanh[E^(a + b*x)])/b

________________________________________________________________________________________

fricas [B]  time = 0.47, size = 49, normalized size = 1.96 \[ \frac {\cosh \left (b x + a\right ) - \log \left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right ) + 1\right ) + \log \left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right ) - 1\right ) + \sinh \left (b x + a\right )}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(b*x+a)*coth(b*x+a),x, algorithm="fricas")

[Out]

(cosh(b*x + a) - log(cosh(b*x + a) + sinh(b*x + a) + 1) + log(cosh(b*x + a) + sinh(b*x + a) - 1) + sinh(b*x +
a))/b

________________________________________________________________________________________

giac [A]  time = 0.12, size = 32, normalized size = 1.28 \[ \frac {e^{\left (b x + a\right )} - \log \left (e^{\left (b x + a\right )} + 1\right ) + \log \left ({\left | e^{\left (b x + a\right )} - 1 \right |}\right )}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(b*x+a)*coth(b*x+a),x, algorithm="giac")

[Out]

(e^(b*x + a) - log(e^(b*x + a) + 1) + log(abs(e^(b*x + a) - 1)))/b

________________________________________________________________________________________

maple [A]  time = 0.09, size = 27, normalized size = 1.08 \[ \frac {\sinh \left (b x +a \right )+\cosh \left (b x +a \right )-2 \arctanh \left ({\mathrm e}^{b x +a}\right )}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(b*x+a)*coth(b*x+a),x)

[Out]

1/b*(sinh(b*x+a)+cosh(b*x+a)-2*arctanh(exp(b*x+a)))

________________________________________________________________________________________

maxima [A]  time = 0.38, size = 38, normalized size = 1.52 \[ \frac {e^{\left (b x + a\right )}}{b} - \frac {\log \left (e^{\left (b x + a\right )} + 1\right )}{b} + \frac {\log \left (e^{\left (b x + a\right )} - 1\right )}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(b*x+a)*coth(b*x+a),x, algorithm="maxima")

[Out]

e^(b*x + a)/b - log(e^(b*x + a) + 1)/b + log(e^(b*x + a) - 1)/b

________________________________________________________________________________________

mupad [B]  time = 0.08, size = 38, normalized size = 1.52 \[ \frac {{\mathrm {e}}^{a+b\,x}}{b}-\frac {2\,\mathrm {atan}\left (\frac {{\mathrm {e}}^{b\,x}\,{\mathrm {e}}^a\,\sqrt {-b^2}}{b}\right )}{\sqrt {-b^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(a + b*x)*exp(a + b*x),x)

[Out]

exp(a + b*x)/b - (2*atan((exp(b*x)*exp(a)*(-b^2)^(1/2))/b))/(-b^2)^(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ e^{a} \int e^{b x} \coth {\left (a + b x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(b*x+a)*coth(b*x+a),x)

[Out]

exp(a)*Integral(exp(b*x)*coth(a + b*x), x)

________________________________________________________________________________________