3.191 \(\int (e x)^m \tanh ^3(d (a+b \log (c x^n))) \, dx\)

Optimal. Leaf size=307 \[ -\frac {(e x)^{m+1} \left (2 b^2 d^2 n^2+m^2+2 m+1\right ) \, _2F_1\left (1,\frac {m+1}{2 b d n};\frac {m+1}{2 b d n}+1;-e^{2 a d} \left (c x^n\right )^{2 b d}\right )}{b^2 d^2 e (m+1) n^2}+\frac {e^{-2 a d} (e x)^{m+1} \left (\frac {e^{2 a d} (-2 b d n+m+1)}{n}-\frac {e^{4 a d} (2 b d n+m+1) \left (c x^n\right )^{2 b d}}{n}\right )}{2 b^2 d^2 e n \left (e^{2 a d} \left (c x^n\right )^{2 b d}+1\right )}-\frac {(e x)^{m+1} \left (1-e^{2 a d} \left (c x^n\right )^{2 b d}\right )^2}{2 b d e n \left (e^{2 a d} \left (c x^n\right )^{2 b d}+1\right )^2}+\frac {(e x)^{m+1} (b d n+m+1) (2 b d n+m+1)}{2 b^2 d^2 e (m+1) n^2} \]

[Out]

1/2*(b*d*n+m+1)*(2*b*d*n+m+1)*(e*x)^(1+m)/b^2/d^2/e/(1+m)/n^2-1/2*(e*x)^(1+m)*(1-exp(2*a*d)*(c*x^n)^(2*b*d))^2
/b/d/e/n/(1+exp(2*a*d)*(c*x^n)^(2*b*d))^2+1/2*(e*x)^(1+m)*(exp(2*a*d)*(-2*b*d*n+m+1)/n-exp(4*a*d)*(2*b*d*n+m+1
)*(c*x^n)^(2*b*d)/n)/b^2/d^2/e/exp(2*a*d)/n/(1+exp(2*a*d)*(c*x^n)^(2*b*d))-(2*b^2*d^2*n^2+m^2+2*m+1)*(e*x)^(1+
m)*hypergeom([1, 1/2*(1+m)/b/d/n],[1+1/2*(1+m)/b/d/n],-exp(2*a*d)*(c*x^n)^(2*b*d))/b^2/d^2/e/(1+m)/n^2

________________________________________________________________________________________

Rubi [F]  time = 0.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int (e x)^m \tanh ^3\left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx \]

Verification is Not applicable to the result.

[In]

Int[(e*x)^m*Tanh[d*(a + b*Log[c*x^n])]^3,x]

[Out]

Defer[Int][(e*x)^m*Tanh[d*(a + b*Log[c*x^n])]^3, x]

Rubi steps

\begin {align*} \int (e x)^m \tanh ^3\left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx &=\int (e x)^m \tanh ^3\left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 17.36, size = 606, normalized size = 1.97 \[ \frac {x^{-m} (e x)^m \left (2 b^2 d^2 n^2+m^2+2 m+1\right ) \text {sech}\left (d \left (a+b \left (\log \left (c x^n\right )-n \log (x)\right )\right )\right ) \left (\frac {x^{m+1} \sinh (b d n \log (x)) \text {sech}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{m+1}-\frac {\cosh \left (d \left (a+b \left (\log \left (c x^n\right )-n \log (x)\right )\right )\right ) \exp \left (-\frac {(2 m+1) \left (a+b \left (\log \left (c x^n\right )-n \log (x)\right )\right )}{b n}\right ) \left ((2 b d n+m+1) \exp \left (\frac {2 a m+a+b (2 m+1) \left (\log \left (c x^n\right )-n \log (x)\right )+b (m+1) n \log (x)}{b n}\right ) \, _2F_1\left (1,\frac {m+1}{2 b d n};\frac {m+1}{2 b d n}+1;-e^{2 d \left (a+b \log \left (c x^n\right )\right )}\right )-(m+1) \exp \left (\frac {a (2 b d n+2 m+1)}{b n}+\frac {(2 b d n+2 m+1) \left (\log \left (c x^n\right )-n \log (x)\right )}{n}+\log (x) (2 b d n+m+1)\right ) \, _2F_1\left (1,\frac {m+2 b d n+1}{2 b d n};\frac {m+4 b d n+1}{2 b d n};-e^{2 d \left (a+b \log \left (c x^n\right )\right )}\right )+(2 b d n+m+1) \tanh \left (d \left (a+b \log \left (c x^n\right )\right )\right ) \exp \left (\frac {2 a m+a+b (2 m+1) \left (\log \left (c x^n\right )-n \log (x)\right )+b (m+1) n \log (x)}{b n}\right )\right )}{(m+1) (2 b d n+m+1)}\right )}{2 b^2 d^2 n^2}-\frac {(m+1) x (e x)^m \sinh (b d n \log (x)) \text {sech}\left (d \left (a+b \left (\log \left (c x^n\right )-n \log (x)\right )\right )\right ) \text {sech}\left (d \left (a+b \left (\log \left (c x^n\right )-n \log (x)\right )\right )+b d n \log (x)\right )}{2 b^2 d^2 n^2}+\frac {x (e x)^m \tanh \left (d \left (a+b \left (\log \left (c x^n\right )-n \log (x)\right )\right )\right )}{m+1}+\frac {x (e x)^m \text {sech}^2\left (d \left (a+b \left (\log \left (c x^n\right )-n \log (x)\right )\right )+b d n \log (x)\right )}{2 b d n} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(e*x)^m*Tanh[d*(a + b*Log[c*x^n])]^3,x]

[Out]

(x*(e*x)^m*Sech[b*d*n*Log[x] + d*(a + b*(-(n*Log[x]) + Log[c*x^n]))]^2)/(2*b*d*n) - ((1 + m)*x*(e*x)^m*Sech[d*
(a + b*(-(n*Log[x]) + Log[c*x^n]))]*Sech[b*d*n*Log[x] + d*(a + b*(-(n*Log[x]) + Log[c*x^n]))]*Sinh[b*d*n*Log[x
]])/(2*b^2*d^2*n^2) + ((1 + 2*m + m^2 + 2*b^2*d^2*n^2)*(e*x)^m*Sech[d*(a + b*(-(n*Log[x]) + Log[c*x^n]))]*((x^
(1 + m)*Sech[d*(a + b*Log[c*x^n])]*Sinh[b*d*n*Log[x]])/(1 + m) - (Cosh[d*(a + b*(-(n*Log[x]) + Log[c*x^n]))]*(
E^((a + 2*a*m + b*(1 + m)*n*Log[x] + b*(1 + 2*m)*(-(n*Log[x]) + Log[c*x^n]))/(b*n))*(1 + m + 2*b*d*n)*Hypergeo
metric2F1[1, (1 + m)/(2*b*d*n), 1 + (1 + m)/(2*b*d*n), -E^(2*d*(a + b*Log[c*x^n]))] - E^((a*(1 + 2*m + 2*b*d*n
))/(b*n) + (1 + m + 2*b*d*n)*Log[x] + ((1 + 2*m + 2*b*d*n)*(-(n*Log[x]) + Log[c*x^n]))/n)*(1 + m)*Hypergeometr
ic2F1[1, (1 + m + 2*b*d*n)/(2*b*d*n), (1 + m + 4*b*d*n)/(2*b*d*n), -E^(2*d*(a + b*Log[c*x^n]))] + E^((a + 2*a*
m + b*(1 + m)*n*Log[x] + b*(1 + 2*m)*(-(n*Log[x]) + Log[c*x^n]))/(b*n))*(1 + m + 2*b*d*n)*Tanh[d*(a + b*Log[c*
x^n])]))/(E^(((1 + 2*m)*(a + b*(-(n*Log[x]) + Log[c*x^n])))/(b*n))*(1 + m)*(1 + m + 2*b*d*n))))/(2*b^2*d^2*n^2
*x^m) + (x*(e*x)^m*Tanh[d*(a + b*(-(n*Log[x]) + Log[c*x^n]))])/(1 + m)

________________________________________________________________________________________

fricas [F]  time = 0.46, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\left (e x\right )^{m} \tanh \left (b d \log \left (c x^{n}\right ) + a d\right )^{3}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*tanh(d*(a+b*log(c*x^n)))^3,x, algorithm="fricas")

[Out]

integral((e*x)^m*tanh(b*d*log(c*x^n) + a*d)^3, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (e x\right )^{m} \tanh \left ({\left (b \log \left (c x^{n}\right ) + a\right )} d\right )^{3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*tanh(d*(a+b*log(c*x^n)))^3,x, algorithm="giac")

[Out]

integrate((e*x)^m*tanh((b*log(c*x^n) + a)*d)^3, x)

________________________________________________________________________________________

maple [F]  time = 1.54, size = 0, normalized size = 0.00 \[ \int \left (e x \right )^{m} \left (\tanh ^{3}\left (d \left (a +b \ln \left (c \,x^{n}\right )\right )\right )\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^m*tanh(d*(a+b*ln(c*x^n)))^3,x)

[Out]

int((e*x)^m*tanh(d*(a+b*ln(c*x^n)))^3,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -{\left (2 \, b^{2} d^{2} e^{m} n^{2} + {\left (m^{2} + 2 \, m + 1\right )} e^{m}\right )} \int \frac {x^{m}}{b^{2} c^{2 \, b d} d^{2} n^{2} e^{\left (2 \, b d \log \left (x^{n}\right ) + 2 \, a d\right )} + b^{2} d^{2} n^{2}}\,{d x} + \frac {b^{2} c^{4 \, b d} d^{2} e^{m} n^{2} x e^{\left (4 \, b d \log \left (x^{n}\right ) + 4 \, a d + m \log \relax (x)\right )} + {\left (b^{2} d^{2} e^{m} n^{2} + {\left (m^{2} + 2 \, m + 1\right )} e^{m}\right )} x x^{m} + {\left (2 \, b^{2} c^{2 \, b d} d^{2} e^{m} n^{2} e^{\left (2 \, a d\right )} + 2 \, {\left (m n + n\right )} b c^{2 \, b d} d e^{m} e^{\left (2 \, a d\right )} + {\left (m^{2} + 2 \, m + 1\right )} c^{2 \, b d} e^{m} e^{\left (2 \, a d\right )}\right )} x e^{\left (2 \, b d \log \left (x^{n}\right ) + m \log \relax (x)\right )}}{{\left (m n^{2} + n^{2}\right )} b^{2} c^{4 \, b d} d^{2} e^{\left (4 \, b d \log \left (x^{n}\right ) + 4 \, a d\right )} + 2 \, {\left (m n^{2} + n^{2}\right )} b^{2} c^{2 \, b d} d^{2} e^{\left (2 \, b d \log \left (x^{n}\right ) + 2 \, a d\right )} + {\left (m n^{2} + n^{2}\right )} b^{2} d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*tanh(d*(a+b*log(c*x^n)))^3,x, algorithm="maxima")

[Out]

-(2*b^2*d^2*e^m*n^2 + (m^2 + 2*m + 1)*e^m)*integrate(x^m/(b^2*c^(2*b*d)*d^2*n^2*e^(2*b*d*log(x^n) + 2*a*d) + b
^2*d^2*n^2), x) + (b^2*c^(4*b*d)*d^2*e^m*n^2*x*e^(4*b*d*log(x^n) + 4*a*d + m*log(x)) + (b^2*d^2*e^m*n^2 + (m^2
 + 2*m + 1)*e^m)*x*x^m + (2*b^2*c^(2*b*d)*d^2*e^m*n^2*e^(2*a*d) + 2*(m*n + n)*b*c^(2*b*d)*d*e^m*e^(2*a*d) + (m
^2 + 2*m + 1)*c^(2*b*d)*e^m*e^(2*a*d))*x*e^(2*b*d*log(x^n) + m*log(x)))/((m*n^2 + n^2)*b^2*c^(4*b*d)*d^2*e^(4*
b*d*log(x^n) + 4*a*d) + 2*(m*n^2 + n^2)*b^2*c^(2*b*d)*d^2*e^(2*b*d*log(x^n) + 2*a*d) + (m*n^2 + n^2)*b^2*d^2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int {\mathrm {tanh}\left (d\,\left (a+b\,\ln \left (c\,x^n\right )\right )\right )}^3\,{\left (e\,x\right )}^m \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(d*(a + b*log(c*x^n)))^3*(e*x)^m,x)

[Out]

int(tanh(d*(a + b*log(c*x^n)))^3*(e*x)^m, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (e x\right )^{m} \tanh ^{3}{\left (a d + b d \log {\left (c x^{n} \right )} \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**m*tanh(d*(a+b*ln(c*x**n)))**3,x)

[Out]

Integral((e*x)**m*tanh(a*d + b*d*log(c*x**n))**3, x)

________________________________________________________________________________________