3.187 \(\int \frac {\tanh ^4(a+b \log (c x^n))}{x} \, dx\)

Optimal. Leaf size=45 \[ -\frac {\tanh ^3\left (a+b \log \left (c x^n\right )\right )}{3 b n}-\frac {\tanh \left (a+b \log \left (c x^n\right )\right )}{b n}+\log (x) \]

[Out]

ln(x)-tanh(a+b*ln(c*x^n))/b/n-1/3*tanh(a+b*ln(c*x^n))^3/b/n

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {3473, 8} \[ -\frac {\tanh ^3\left (a+b \log \left (c x^n\right )\right )}{3 b n}-\frac {\tanh \left (a+b \log \left (c x^n\right )\right )}{b n}+\log (x) \]

Antiderivative was successfully verified.

[In]

Int[Tanh[a + b*Log[c*x^n]]^4/x,x]

[Out]

Log[x] - Tanh[a + b*Log[c*x^n]]/(b*n) - Tanh[a + b*Log[c*x^n]]^3/(3*b*n)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3473

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(b*Tan[c + d*x])^(n - 1))/(d*(n - 1)), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rubi steps

\begin {align*} \int \frac {\tanh ^4\left (a+b \log \left (c x^n\right )\right )}{x} \, dx &=\frac {\operatorname {Subst}\left (\int \tanh ^4(a+b x) \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=-\frac {\tanh ^3\left (a+b \log \left (c x^n\right )\right )}{3 b n}+\frac {\operatorname {Subst}\left (\int \tanh ^2(a+b x) \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=-\frac {\tanh \left (a+b \log \left (c x^n\right )\right )}{b n}-\frac {\tanh ^3\left (a+b \log \left (c x^n\right )\right )}{3 b n}+\frac {\operatorname {Subst}\left (\int 1 \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=\log (x)-\frac {\tanh \left (a+b \log \left (c x^n\right )\right )}{b n}-\frac {\tanh ^3\left (a+b \log \left (c x^n\right )\right )}{3 b n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 62, normalized size = 1.38 \[ \frac {\tanh ^{-1}\left (\tanh \left (a+b \log \left (c x^n\right )\right )\right )}{b n}-\frac {\tanh ^3\left (a+b \log \left (c x^n\right )\right )}{3 b n}-\frac {\tanh \left (a+b \log \left (c x^n\right )\right )}{b n} \]

Antiderivative was successfully verified.

[In]

Integrate[Tanh[a + b*Log[c*x^n]]^4/x,x]

[Out]

ArcTanh[Tanh[a + b*Log[c*x^n]]]/(b*n) - Tanh[a + b*Log[c*x^n]]/(b*n) - Tanh[a + b*Log[c*x^n]]^3/(3*b*n)

________________________________________________________________________________________

fricas [B]  time = 0.77, size = 194, normalized size = 4.31 \[ \frac {{\left (3 \, b n \log \relax (x) + 4\right )} \cosh \left (b n \log \relax (x) + b \log \relax (c) + a\right )^{3} + 3 \, {\left (3 \, b n \log \relax (x) + 4\right )} \cosh \left (b n \log \relax (x) + b \log \relax (c) + a\right ) \sinh \left (b n \log \relax (x) + b \log \relax (c) + a\right )^{2} - 12 \, \cosh \left (b n \log \relax (x) + b \log \relax (c) + a\right )^{2} \sinh \left (b n \log \relax (x) + b \log \relax (c) + a\right ) - 4 \, \sinh \left (b n \log \relax (x) + b \log \relax (c) + a\right )^{3} + 3 \, {\left (3 \, b n \log \relax (x) + 4\right )} \cosh \left (b n \log \relax (x) + b \log \relax (c) + a\right )}{3 \, {\left (b n \cosh \left (b n \log \relax (x) + b \log \relax (c) + a\right )^{3} + 3 \, b n \cosh \left (b n \log \relax (x) + b \log \relax (c) + a\right ) \sinh \left (b n \log \relax (x) + b \log \relax (c) + a\right )^{2} + 3 \, b n \cosh \left (b n \log \relax (x) + b \log \relax (c) + a\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+b*log(c*x^n))^4/x,x, algorithm="fricas")

[Out]

1/3*((3*b*n*log(x) + 4)*cosh(b*n*log(x) + b*log(c) + a)^3 + 3*(3*b*n*log(x) + 4)*cosh(b*n*log(x) + b*log(c) +
a)*sinh(b*n*log(x) + b*log(c) + a)^2 - 12*cosh(b*n*log(x) + b*log(c) + a)^2*sinh(b*n*log(x) + b*log(c) + a) -
4*sinh(b*n*log(x) + b*log(c) + a)^3 + 3*(3*b*n*log(x) + 4)*cosh(b*n*log(x) + b*log(c) + a))/(b*n*cosh(b*n*log(
x) + b*log(c) + a)^3 + 3*b*n*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log(c) + a)^2 + 3*b*n*cosh(b*
n*log(x) + b*log(c) + a))

________________________________________________________________________________________

giac [A]  time = 0.34, size = 67, normalized size = 1.49 \[ \frac {4 \, {\left (3 \, c^{4 \, b} x^{4 \, b n} e^{\left (4 \, a\right )} + 3 \, c^{2 \, b} x^{2 \, b n} e^{\left (2 \, a\right )} + 2\right )}}{3 \, {\left (c^{2 \, b} x^{2 \, b n} e^{\left (2 \, a\right )} + 1\right )}^{3} b n} + \log \relax (x) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+b*log(c*x^n))^4/x,x, algorithm="giac")

[Out]

4/3*(3*c^(4*b)*x^(4*b*n)*e^(4*a) + 3*c^(2*b)*x^(2*b*n)*e^(2*a) + 2)/((c^(2*b)*x^(2*b*n)*e^(2*a) + 1)^3*b*n) +
log(x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 86, normalized size = 1.91 \[ -\frac {\tanh ^{3}\left (a +b \ln \left (c \,x^{n}\right )\right )}{3 b n}-\frac {\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )}{b n}-\frac {\ln \left (\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )-1\right )}{2 n b}+\frac {\ln \left (\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )+1\right )}{2 n b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(a+b*ln(c*x^n))^4/x,x)

[Out]

-1/3*tanh(a+b*ln(c*x^n))^3/b/n-tanh(a+b*ln(c*x^n))/b/n-1/2/n/b*ln(tanh(a+b*ln(c*x^n))-1)+1/2/n/b*ln(tanh(a+b*l
n(c*x^n))+1)

________________________________________________________________________________________

maxima [B]  time = 0.53, size = 494, normalized size = 10.98 \[ \frac {18 \, c^{4 \, b} e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} + 27 \, c^{2 \, b} e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + 11}{12 \, {\left (b c^{6 \, b} n e^{\left (6 \, b \log \left (x^{n}\right ) + 6 \, a\right )} + 3 \, b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} + 3 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} + \frac {6 \, c^{4 \, b} e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} + 15 \, c^{2 \, b} e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + 11}{12 \, {\left (b c^{6 \, b} n e^{\left (6 \, b \log \left (x^{n}\right ) + 6 \, a\right )} + 3 \, b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} + 3 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} + \frac {2 \, {\left (3 \, c^{4 \, b} e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} + 3 \, c^{2 \, b} e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + 1\right )}}{3 \, {\left (b c^{6 \, b} n e^{\left (6 \, b \log \left (x^{n}\right ) + 6 \, a\right )} + 3 \, b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} + 3 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} - \frac {3 \, c^{2 \, b} e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + 1}{2 \, {\left (b c^{6 \, b} n e^{\left (6 \, b \log \left (x^{n}\right ) + 6 \, a\right )} + 3 \, b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} + 3 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} + \frac {2}{3 \, {\left (b c^{6 \, b} n e^{\left (6 \, b \log \left (x^{n}\right ) + 6 \, a\right )} + 3 \, b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} + 3 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} + \log \relax (x) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+b*log(c*x^n))^4/x,x, algorithm="maxima")

[Out]

1/12*(18*c^(4*b)*e^(4*b*log(x^n) + 4*a) + 27*c^(2*b)*e^(2*b*log(x^n) + 2*a) + 11)/(b*c^(6*b)*n*e^(6*b*log(x^n)
 + 6*a) + 3*b*c^(4*b)*n*e^(4*b*log(x^n) + 4*a) + 3*b*c^(2*b)*n*e^(2*b*log(x^n) + 2*a) + b*n) + 1/12*(6*c^(4*b)
*e^(4*b*log(x^n) + 4*a) + 15*c^(2*b)*e^(2*b*log(x^n) + 2*a) + 11)/(b*c^(6*b)*n*e^(6*b*log(x^n) + 6*a) + 3*b*c^
(4*b)*n*e^(4*b*log(x^n) + 4*a) + 3*b*c^(2*b)*n*e^(2*b*log(x^n) + 2*a) + b*n) + 2/3*(3*c^(4*b)*e^(4*b*log(x^n)
+ 4*a) + 3*c^(2*b)*e^(2*b*log(x^n) + 2*a) + 1)/(b*c^(6*b)*n*e^(6*b*log(x^n) + 6*a) + 3*b*c^(4*b)*n*e^(4*b*log(
x^n) + 4*a) + 3*b*c^(2*b)*n*e^(2*b*log(x^n) + 2*a) + b*n) - 1/2*(3*c^(2*b)*e^(2*b*log(x^n) + 2*a) + 1)/(b*c^(6
*b)*n*e^(6*b*log(x^n) + 6*a) + 3*b*c^(4*b)*n*e^(4*b*log(x^n) + 4*a) + 3*b*c^(2*b)*n*e^(2*b*log(x^n) + 2*a) + b
*n) + 2/3/(b*c^(6*b)*n*e^(6*b*log(x^n) + 6*a) + 3*b*c^(4*b)*n*e^(4*b*log(x^n) + 4*a) + 3*b*c^(2*b)*n*e^(2*b*lo
g(x^n) + 2*a) + b*n) + log(x)

________________________________________________________________________________________

mupad [B]  time = 1.09, size = 162, normalized size = 3.60 \[ \ln \relax (x)+\frac {\frac {4}{3\,b\,n}+\frac {4\,{\mathrm {e}}^{4\,a}\,{\left (c\,x^n\right )}^{4\,b}}{3\,b\,n}}{3\,{\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}+3\,{\mathrm {e}}^{4\,a}\,{\left (c\,x^n\right )}^{4\,b}+{\mathrm {e}}^{6\,a}\,{\left (c\,x^n\right )}^{6\,b}+1}+\frac {4}{3\,b\,n\,\left ({\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}+1\right )}+\frac {4\,{\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}}{3\,b\,n\,\left (2\,{\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}+{\mathrm {e}}^{4\,a}\,{\left (c\,x^n\right )}^{4\,b}+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(a + b*log(c*x^n))^4/x,x)

[Out]

log(x) + (4/(3*b*n) + (4*exp(4*a)*(c*x^n)^(4*b))/(3*b*n))/(3*exp(2*a)*(c*x^n)^(2*b) + 3*exp(4*a)*(c*x^n)^(4*b)
 + exp(6*a)*(c*x^n)^(6*b) + 1) + 4/(3*b*n*(exp(2*a)*(c*x^n)^(2*b) + 1)) + (4*exp(2*a)*(c*x^n)^(2*b))/(3*b*n*(2
*exp(2*a)*(c*x^n)^(2*b) + exp(4*a)*(c*x^n)^(4*b) + 1))

________________________________________________________________________________________

sympy [A]  time = 8.47, size = 71, normalized size = 1.58 \[ \begin {cases} \log {\relax (x )} \tanh ^{4}{\relax (a )} & \text {for}\: b = 0 \wedge n = 0 \\\log {\relax (x )} \tanh ^{4}{\left (a + b \log {\relax (c )} \right )} & \text {for}\: n = 0 \\\log {\relax (x )} \tanh ^{4}{\relax (a )} & \text {for}\: b = 0 \\\log {\relax (x )} - \frac {\tanh ^{3}{\left (a + b n \log {\relax (x )} + b \log {\relax (c )} \right )}}{3 b n} - \frac {\tanh {\left (a + b n \log {\relax (x )} + b \log {\relax (c )} \right )}}{b n} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+b*ln(c*x**n))**4/x,x)

[Out]

Piecewise((log(x)*tanh(a)**4, Eq(b, 0) & Eq(n, 0)), (log(x)*tanh(a + b*log(c))**4, Eq(n, 0)), (log(x)*tanh(a)*
*4, Eq(b, 0)), (log(x) - tanh(a + b*n*log(x) + b*log(c))**3/(3*b*n) - tanh(a + b*n*log(x) + b*log(c))/(b*n), T
rue))

________________________________________________________________________________________