3.170 \(\int \tanh ^p(a+2 \log (x)) \, dx\)

Optimal. Leaf size=61 \[ x \left (1-e^{2 a} x^4\right )^{-p} \left (e^{2 a} x^4-1\right )^p F_1\left (\frac {1}{4};-p,p;\frac {5}{4};e^{2 a} x^4,-e^{2 a} x^4\right ) \]

[Out]

x*(-1+exp(2*a)*x^4)^p*AppellF1(1/4,-p,p,5/4,exp(2*a)*x^4,-exp(2*a)*x^4)/((1-exp(2*a)*x^4)^p)

________________________________________________________________________________________

Rubi [F]  time = 0.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \tanh ^p(a+2 \log (x)) \, dx \]

Verification is Not applicable to the result.

[In]

Int[Tanh[a + 2*Log[x]]^p,x]

[Out]

Defer[Int][Tanh[a + 2*Log[x]]^p, x]

Rubi steps

\begin {align*} \int \tanh ^p(a+2 \log (x)) \, dx &=\int \tanh ^p(a+2 \log (x)) \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 1.98, size = 171, normalized size = 2.80 \[ \frac {5 x \left (\frac {e^{2 a} x^4-1}{e^{2 a} x^4+1}\right )^p F_1\left (\frac {1}{4};-p,p;\frac {5}{4};e^{2 a} x^4,-e^{2 a} x^4\right )}{5 F_1\left (\frac {1}{4};-p,p;\frac {5}{4};e^{2 a} x^4,-e^{2 a} x^4\right )-4 e^{2 a} p x^4 \left (F_1\left (\frac {5}{4};1-p,p;\frac {9}{4};e^{2 a} x^4,-e^{2 a} x^4\right )+F_1\left (\frac {5}{4};-p,p+1;\frac {9}{4};e^{2 a} x^4,-e^{2 a} x^4\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Tanh[a + 2*Log[x]]^p,x]

[Out]

(5*x*((-1 + E^(2*a)*x^4)/(1 + E^(2*a)*x^4))^p*AppellF1[1/4, -p, p, 5/4, E^(2*a)*x^4, -(E^(2*a)*x^4)])/(5*Appel
lF1[1/4, -p, p, 5/4, E^(2*a)*x^4, -(E^(2*a)*x^4)] - 4*E^(2*a)*p*x^4*(AppellF1[5/4, 1 - p, p, 9/4, E^(2*a)*x^4,
 -(E^(2*a)*x^4)] + AppellF1[5/4, -p, 1 + p, 9/4, E^(2*a)*x^4, -(E^(2*a)*x^4)]))

________________________________________________________________________________________

fricas [F]  time = 0.57, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\tanh \left (a + 2 \, \log \relax (x)\right )^{p}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+2*log(x))^p,x, algorithm="fricas")

[Out]

integral(tanh(a + 2*log(x))^p, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \tanh \left (a + 2 \, \log \relax (x)\right )^{p}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+2*log(x))^p,x, algorithm="giac")

[Out]

integrate(tanh(a + 2*log(x))^p, x)

________________________________________________________________________________________

maple [F]  time = 0.14, size = 0, normalized size = 0.00 \[ \int \tanh ^{p}\left (a +2 \ln \relax (x )\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(a+2*ln(x))^p,x)

[Out]

int(tanh(a+2*ln(x))^p,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \tanh \left (a + 2 \, \log \relax (x)\right )^{p}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+2*log(x))^p,x, algorithm="maxima")

[Out]

integrate(tanh(a + 2*log(x))^p, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int {\mathrm {tanh}\left (a+2\,\ln \relax (x)\right )}^p \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(a + 2*log(x))^p,x)

[Out]

int(tanh(a + 2*log(x))^p, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \tanh ^{p}{\left (a + 2 \log {\relax (x )} \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+2*ln(x))**p,x)

[Out]

Integral(tanh(a + 2*log(x))**p, x)

________________________________________________________________________________________