3.4 \(\int x \sec ^{-1}(\sqrt {x}) \, dx\)

Optimal. Leaf size=36 \[ \frac {1}{2} x^2 \sec ^{-1}\left (\sqrt {x}\right )-\frac {1}{6} (x-1)^{3/2}-\frac {\sqrt {x-1}}{2} \]

[Out]

-1/6*(-1+x)^(3/2)+1/2*x^2*arcsec(x^(1/2))-1/2*(-1+x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 36, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {5270, 12, 43} \[ \frac {1}{2} x^2 \sec ^{-1}\left (\sqrt {x}\right )-\frac {1}{6} (x-1)^{3/2}-\frac {\sqrt {x-1}}{2} \]

Antiderivative was successfully verified.

[In]

Int[x*ArcSec[Sqrt[x]],x]

[Out]

-Sqrt[-1 + x]/2 - (-1 + x)^(3/2)/6 + (x^2*ArcSec[Sqrt[x]])/2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 5270

Int[((a_.) + ArcSec[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m + 1)*(a + b*ArcSec[
u]))/(d*(m + 1)), x] - Dist[(b*u)/(d*(m + 1)*Sqrt[u^2]), Int[SimplifyIntegrand[((c + d*x)^(m + 1)*D[u, x])/(u*
Sqrt[u^2 - 1]), x], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] &&  !Funct
ionOfQ[(c + d*x)^(m + 1), u, x] &&  !FunctionOfExponentialQ[u, x]

Rubi steps

\begin {align*} \int x \sec ^{-1}\left (\sqrt {x}\right ) \, dx &=\frac {1}{2} x^2 \sec ^{-1}\left (\sqrt {x}\right )-\frac {1}{2} \int \frac {x}{2 \sqrt {-1+x}} \, dx\\ &=\frac {1}{2} x^2 \sec ^{-1}\left (\sqrt {x}\right )-\frac {1}{4} \int \frac {x}{\sqrt {-1+x}} \, dx\\ &=\frac {1}{2} x^2 \sec ^{-1}\left (\sqrt {x}\right )-\frac {1}{4} \int \left (\frac {1}{\sqrt {-1+x}}+\sqrt {-1+x}\right ) \, dx\\ &=-\frac {1}{2} \sqrt {-1+x}-\frac {1}{6} (-1+x)^{3/2}+\frac {1}{2} x^2 \sec ^{-1}\left (\sqrt {x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 28, normalized size = 0.78 \[ \frac {1}{2} x^2 \sec ^{-1}\left (\sqrt {x}\right )-\frac {1}{6} \sqrt {x-1} (x+2) \]

Antiderivative was successfully verified.

[In]

Integrate[x*ArcSec[Sqrt[x]],x]

[Out]

-1/6*(Sqrt[-1 + x]*(2 + x)) + (x^2*ArcSec[Sqrt[x]])/2

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 20, normalized size = 0.56 \[ \frac {1}{2} \, x^{2} \operatorname {arcsec}\left (\sqrt {x}\right ) - \frac {1}{6} \, {\left (x + 2\right )} \sqrt {x - 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arcsec(x^(1/2)),x, algorithm="fricas")

[Out]

1/2*x^2*arcsec(sqrt(x)) - 1/6*(x + 2)*sqrt(x - 1)

________________________________________________________________________________________

giac [B]  time = 0.15, size = 80, normalized size = 2.22 \[ -\frac {1}{48} \, x^{\frac {3}{2}} {\left (\sqrt {-\frac {1}{x} + 1} - 1\right )}^{3} + \frac {1}{2} \, x^{2} \arccos \left (\frac {1}{\sqrt {x}}\right ) - \frac {3}{16} \, \sqrt {x} {\left (\sqrt {-\frac {1}{x} + 1} - 1\right )} + \frac {9 \, x {\left (\sqrt {-\frac {1}{x} + 1} - 1\right )}^{2} + 1}{48 \, x^{\frac {3}{2}} {\left (\sqrt {-\frac {1}{x} + 1} - 1\right )}^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arcsec(x^(1/2)),x, algorithm="giac")

[Out]

-1/48*x^(3/2)*(sqrt(-1/x + 1) - 1)^3 + 1/2*x^2*arccos(1/sqrt(x)) - 3/16*sqrt(x)*(sqrt(-1/x + 1) - 1) + 1/48*(9
*x*(sqrt(-1/x + 1) - 1)^2 + 1)/(x^(3/2)*(sqrt(-1/x + 1) - 1)^3)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 31, normalized size = 0.86 \[ \frac {x^{2} \mathrm {arcsec}\left (\sqrt {x}\right )}{2}-\frac {\left (x -1\right ) \left (x +2\right )}{6 \sqrt {\frac {x -1}{x}}\, \sqrt {x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arcsec(x^(1/2)),x)

[Out]

1/2*x^2*arcsec(x^(1/2))-1/6*(x-1)*(x+2)/((x-1)/x)^(1/2)/x^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 38, normalized size = 1.06 \[ -\frac {1}{6} \, x^{\frac {3}{2}} {\left (-\frac {1}{x} + 1\right )}^{\frac {3}{2}} + \frac {1}{2} \, x^{2} \operatorname {arcsec}\left (\sqrt {x}\right ) - \frac {1}{2} \, \sqrt {x} \sqrt {-\frac {1}{x} + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arcsec(x^(1/2)),x, algorithm="maxima")

[Out]

-1/6*x^(3/2)*(-1/x + 1)^(3/2) + 1/2*x^2*arcsec(sqrt(x)) - 1/2*sqrt(x)*sqrt(-1/x + 1)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ \int x\,\mathrm {acos}\left (\frac {1}{\sqrt {x}}\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*acos(1/x^(1/2)),x)

[Out]

int(x*acos(1/x^(1/2)), x)

________________________________________________________________________________________

sympy [C]  time = 8.94, size = 58, normalized size = 1.61 \[ \frac {x^{2} \operatorname {asec}{\left (\sqrt {x} \right )}}{2} - \frac {\begin {cases} \frac {x \sqrt {x - 1}}{3} + \frac {2 \sqrt {x - 1}}{3} & \text {for}\: \left |{x}\right | > 1 \\\frac {i x \sqrt {1 - x}}{3} + \frac {2 i \sqrt {1 - x}}{3} & \text {otherwise} \end {cases}}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*asec(x**(1/2)),x)

[Out]

x**2*asec(sqrt(x))/2 - Piecewise((x*sqrt(x - 1)/3 + 2*sqrt(x - 1)/3, Abs(x) > 1), (I*x*sqrt(1 - x)/3 + 2*I*sqr
t(1 - x)/3, True))/2

________________________________________________________________________________________