3.73 \(\int \frac {\cot ^{-1}(x)^2}{(1+x^2)^2} \, dx\)

Optimal. Leaf size=56 \[ -\frac {x}{4 \left (x^2+1\right )}+\frac {x \cot ^{-1}(x)^2}{2 \left (x^2+1\right )}-\frac {\cot ^{-1}(x)}{2 \left (x^2+1\right )}-\frac {1}{4} \tan ^{-1}(x)-\frac {1}{6} \cot ^{-1}(x)^3 \]

[Out]

-1/4*x/(x^2+1)-1/2*arccot(x)/(x^2+1)+1/2*x*arccot(x)^2/(x^2+1)-1/6*arccot(x)^3-1/4*arctan(x)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 56, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {4893, 4931, 199, 203} \[ -\frac {x}{4 \left (x^2+1\right )}+\frac {x \cot ^{-1}(x)^2}{2 \left (x^2+1\right )}-\frac {\cot ^{-1}(x)}{2 \left (x^2+1\right )}-\frac {1}{4} \tan ^{-1}(x)-\frac {1}{6} \cot ^{-1}(x)^3 \]

Antiderivative was successfully verified.

[In]

Int[ArcCot[x]^2/(1 + x^2)^2,x]

[Out]

-x/(4*(1 + x^2)) - ArcCot[x]/(2*(1 + x^2)) + (x*ArcCot[x]^2)/(2*(1 + x^2)) - ArcCot[x]^3/6 - ArcTan[x]/4

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 4893

Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[(x*(a + b*ArcCot[c*x])
^p)/(2*d*(d + e*x^2)), x] + (Dist[(b*c*p)/2, Int[(x*(a + b*ArcCot[c*x])^(p - 1))/(d + e*x^2)^2, x], x] - Simp[
(a + b*ArcCot[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)), x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0
]

Rule 4931

Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[((d + e*x^2)^
(q + 1)*(a + b*ArcCot[c*x])^p)/(2*e*(q + 1)), x] + Dist[(b*p)/(2*c*(q + 1)), Int[(d + e*x^2)^q*(a + b*ArcCot[c
*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && NeQ[q, -1]

Rubi steps

\begin {align*} \int \frac {\cot ^{-1}(x)^2}{\left (1+x^2\right )^2} \, dx &=\frac {x \cot ^{-1}(x)^2}{2 \left (1+x^2\right )}-\frac {1}{6} \cot ^{-1}(x)^3+\int \frac {x \cot ^{-1}(x)}{\left (1+x^2\right )^2} \, dx\\ &=-\frac {\cot ^{-1}(x)}{2 \left (1+x^2\right )}+\frac {x \cot ^{-1}(x)^2}{2 \left (1+x^2\right )}-\frac {1}{6} \cot ^{-1}(x)^3-\frac {1}{2} \int \frac {1}{\left (1+x^2\right )^2} \, dx\\ &=-\frac {x}{4 \left (1+x^2\right )}-\frac {\cot ^{-1}(x)}{2 \left (1+x^2\right )}+\frac {x \cot ^{-1}(x)^2}{2 \left (1+x^2\right )}-\frac {1}{6} \cot ^{-1}(x)^3-\frac {1}{4} \int \frac {1}{1+x^2} \, dx\\ &=-\frac {x}{4 \left (1+x^2\right )}-\frac {\cot ^{-1}(x)}{2 \left (1+x^2\right )}+\frac {x \cot ^{-1}(x)^2}{2 \left (1+x^2\right )}-\frac {1}{6} \cot ^{-1}(x)^3-\frac {1}{4} \tan ^{-1}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 46, normalized size = 0.82 \[ -\frac {3 \left (\left (x^2+1\right ) \tan ^{-1}(x)+x\right )+2 \left (x^2+1\right ) \cot ^{-1}(x)^3-6 x \cot ^{-1}(x)^2+6 \cot ^{-1}(x)}{12 \left (x^2+1\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcCot[x]^2/(1 + x^2)^2,x]

[Out]

-1/12*(6*ArcCot[x] - 6*x*ArcCot[x]^2 + 2*(1 + x^2)*ArcCot[x]^3 + 3*(x + (1 + x^2)*ArcTan[x]))/(1 + x^2)

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 40, normalized size = 0.71 \[ -\frac {2 \, {\left (x^{2} + 1\right )} \operatorname {arccot}\relax (x)^{3} - 6 \, x \operatorname {arccot}\relax (x)^{2} - 3 \, {\left (x^{2} - 1\right )} \operatorname {arccot}\relax (x) + 3 \, x}{12 \, {\left (x^{2} + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccot(x)^2/(x^2+1)^2,x, algorithm="fricas")

[Out]

-1/12*(2*(x^2 + 1)*arccot(x)^3 - 6*x*arccot(x)^2 - 3*(x^2 - 1)*arccot(x) + 3*x)/(x^2 + 1)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {arccot}\relax (x)^{2}}{{\left (x^{2} + 1\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccot(x)^2/(x^2+1)^2,x, algorithm="giac")

[Out]

integrate(arccot(x)^2/(x^2 + 1)^2, x)

________________________________________________________________________________________

maple [A]  time = 0.35, size = 61, normalized size = 1.09 \[ -\frac {\mathrm {arccot}\relax (x )^{2} \left (x^{2} \mathrm {arccot}\relax (x )+\mathrm {arccot}\relax (x )-x \right )}{2 \left (x^{2}+1\right )}+\frac {x^{2} \mathrm {arccot}\relax (x )}{2 x^{2}+2}-\frac {x}{4 \left (x^{2}+1\right )}-\frac {\mathrm {arccot}\relax (x )}{4}+\frac {\mathrm {arccot}\relax (x )^{3}}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccot(x)^2/(x^2+1)^2,x)

[Out]

-1/2*arccot(x)^2*(x^2*arccot(x)+arccot(x)-x)/(x^2+1)+1/2*x^2*arccot(x)/(x^2+1)-1/4*x/(x^2+1)-1/4*arccot(x)+1/3
*arccot(x)^3

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 75, normalized size = 1.34 \[ \frac {1}{2} \, {\left (\frac {x}{x^{2} + 1} + \arctan \relax (x)\right )} \operatorname {arccot}\relax (x)^{2} + \frac {{\left ({\left (x^{2} + 1\right )} \arctan \relax (x)^{2} - 1\right )} \operatorname {arccot}\relax (x)}{2 \, {\left (x^{2} + 1\right )}} + \frac {2 \, {\left (x^{2} + 1\right )} \arctan \relax (x)^{3} - 3 \, {\left (x^{2} + 1\right )} \arctan \relax (x) - 3 \, x}{12 \, {\left (x^{2} + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccot(x)^2/(x^2+1)^2,x, algorithm="maxima")

[Out]

1/2*(x/(x^2 + 1) + arctan(x))*arccot(x)^2 + 1/2*((x^2 + 1)*arctan(x)^2 - 1)*arccot(x)/(x^2 + 1) + 1/12*(2*(x^2
 + 1)*arctan(x)^3 - 3*(x^2 + 1)*arctan(x) - 3*x)/(x^2 + 1)

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 51, normalized size = 0.91 \[ \frac {x\,{\mathrm {acot}\relax (x)}^2}{2\,\left (x^2+1\right )}-\frac {{\mathrm {acot}\relax (x)}^3}{6}-\frac {x}{4\,\left (x^2+1\right )}-\frac {\mathrm {acot}\relax (x)}{2\,\left (x^2+1\right )}-\frac {\mathrm {atan}\relax (x)}{4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(acot(x)^2/(x^2 + 1)^2,x)

[Out]

(x*acot(x)^2)/(2*(x^2 + 1)) - acot(x)^3/6 - x/(4*(x^2 + 1)) - acot(x)/(2*(x^2 + 1)) - atan(x)/4

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {acot}^{2}{\relax (x )}}{\left (x^{2} + 1\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acot(x)**2/(x**2+1)**2,x)

[Out]

Integral(acot(x)**2/(x**2 + 1)**2, x)

________________________________________________________________________________________