3.11 \(\int \frac {\cot ^{-1}(a x)}{x^5} \, dx\)

Optimal. Leaf size=41 \[ -\frac {1}{4} a^4 \tan ^{-1}(a x)-\frac {a^3}{4 x}-\frac {\cot ^{-1}(a x)}{4 x^4}+\frac {a}{12 x^3} \]

[Out]

1/12*a/x^3-1/4*a^3/x-1/4*arccot(a*x)/x^4-1/4*a^4*arctan(a*x)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {4853, 325, 203} \[ -\frac {a^3}{4 x}-\frac {1}{4} a^4 \tan ^{-1}(a x)+\frac {a}{12 x^3}-\frac {\cot ^{-1}(a x)}{4 x^4} \]

Antiderivative was successfully verified.

[In]

Int[ArcCot[a*x]/x^5,x]

[Out]

a/(12*x^3) - a^3/(4*x) - ArcCot[a*x]/(4*x^4) - (a^4*ArcTan[a*x])/4

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 4853

Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcCo
t[c*x])^p)/(d*(m + 1)), x] + Dist[(b*c*p)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcCot[c*x])^(p - 1))/(1 + c^
2*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\cot ^{-1}(a x)}{x^5} \, dx &=-\frac {\cot ^{-1}(a x)}{4 x^4}-\frac {1}{4} a \int \frac {1}{x^4 \left (1+a^2 x^2\right )} \, dx\\ &=\frac {a}{12 x^3}-\frac {\cot ^{-1}(a x)}{4 x^4}+\frac {1}{4} a^3 \int \frac {1}{x^2 \left (1+a^2 x^2\right )} \, dx\\ &=\frac {a}{12 x^3}-\frac {a^3}{4 x}-\frac {\cot ^{-1}(a x)}{4 x^4}-\frac {1}{4} a^5 \int \frac {1}{1+a^2 x^2} \, dx\\ &=\frac {a}{12 x^3}-\frac {a^3}{4 x}-\frac {\cot ^{-1}(a x)}{4 x^4}-\frac {1}{4} a^4 \tan ^{-1}(a x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.00, size = 36, normalized size = 0.88 \[ \frac {a \, _2F_1\left (-\frac {3}{2},1;-\frac {1}{2};-a^2 x^2\right )}{12 x^3}-\frac {\cot ^{-1}(a x)}{4 x^4} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcCot[a*x]/x^5,x]

[Out]

-1/4*ArcCot[a*x]/x^4 + (a*Hypergeometric2F1[-3/2, 1, -1/2, -(a^2*x^2)])/(12*x^3)

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 33, normalized size = 0.80 \[ -\frac {3 \, a^{3} x^{3} - a x - 3 \, {\left (a^{4} x^{4} - 1\right )} \operatorname {arccot}\left (a x\right )}{12 \, x^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccot(a*x)/x^5,x, algorithm="fricas")

[Out]

-1/12*(3*a^3*x^3 - a*x - 3*(a^4*x^4 - 1)*arccot(a*x))/x^4

________________________________________________________________________________________

giac [A]  time = 0.11, size = 51, normalized size = 1.24 \[ -\frac {1}{12} \, {\left (a^{3} {\left (\frac {3}{a x} - \frac {1}{a^{3} x^{3}} - 3 \, \arctan \left (\frac {1}{a x}\right )\right )} + \frac {3 \, \arctan \left (\frac {1}{a x}\right )}{a x^{4}}\right )} a \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccot(a*x)/x^5,x, algorithm="giac")

[Out]

-1/12*(a^3*(3/(a*x) - 1/(a^3*x^3) - 3*arctan(1/(a*x))) + 3*arctan(1/(a*x))/(a*x^4))*a

________________________________________________________________________________________

maple [A]  time = 0.04, size = 34, normalized size = 0.83 \[ \frac {a}{12 x^{3}}-\frac {a^{3}}{4 x}-\frac {\mathrm {arccot}\left (a x \right )}{4 x^{4}}-\frac {a^{4} \arctan \left (a x \right )}{4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccot(a*x)/x^5,x)

[Out]

1/12*a/x^3-1/4*a^3/x-1/4*arccot(a*x)/x^4-1/4*a^4*arctan(a*x)

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 37, normalized size = 0.90 \[ -\frac {1}{12} \, {\left (3 \, a^{3} \arctan \left (a x\right ) + \frac {3 \, a^{2} x^{2} - 1}{x^{3}}\right )} a - \frac {\operatorname {arccot}\left (a x\right )}{4 \, x^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccot(a*x)/x^5,x, algorithm="maxima")

[Out]

-1/12*(3*a^3*arctan(a*x) + (3*a^2*x^2 - 1)/x^3)*a - 1/4*arccot(a*x)/x^4

________________________________________________________________________________________

mupad [B]  time = 0.70, size = 47, normalized size = 1.15 \[ \left \{\begin {array}{cl} -\frac {\pi }{8\,x^4} & \text {\ if\ \ }a=0\\ -\frac {a^4\,\mathrm {atan}\left (a\,x\right )}{4}-\frac {\frac {\mathrm {acot}\left (a\,x\right )}{4}-\frac {a\,x}{12}+\frac {a^3\,x^3}{4}}{x^4} & \text {\ if\ \ }a\neq 0 \end {array}\right . \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(acot(a*x)/x^5,x)

[Out]

piecewise(a == 0, -pi/(8*x^4), a ~= 0, - (a^4*atan(a*x))/4 - (acot(a*x)/4 - (a*x)/12 + (a^3*x^3)/4)/x^4)

________________________________________________________________________________________

sympy [A]  time = 0.75, size = 32, normalized size = 0.78 \[ \frac {a^{4} \operatorname {acot}{\left (a x \right )}}{4} - \frac {a^{3}}{4 x} + \frac {a}{12 x^{3}} - \frac {\operatorname {acot}{\left (a x \right )}}{4 x^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acot(a*x)/x**5,x)

[Out]

a**4*acot(a*x)/4 - a**3/(4*x) + a/(12*x**3) - acot(a*x)/(4*x**4)

________________________________________________________________________________________