3.56 \(\int \frac {e^{-3 i \tan ^{-1}(a x)}}{x} \, dx\)

Optimal. Leaf size=52 \[ \frac {4 i \sqrt {a^2 x^2+1}}{-a x+i}-\tanh ^{-1}\left (\sqrt {a^2 x^2+1}\right )+i \sinh ^{-1}(a x) \]

[Out]

I*arcsinh(a*x)-arctanh((a^2*x^2+1)^(1/2))+4*I*(a^2*x^2+1)^(1/2)/(I-a*x)

________________________________________________________________________________________

Rubi [A]  time = 0.57, antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5060, 6742, 215, 266, 63, 208, 651} \[ \frac {4 i \sqrt {a^2 x^2+1}}{-a x+i}-\tanh ^{-1}\left (\sqrt {a^2 x^2+1}\right )+i \sinh ^{-1}(a x) \]

Antiderivative was successfully verified.

[In]

Int[1/(E^((3*I)*ArcTan[a*x])*x),x]

[Out]

((4*I)*Sqrt[1 + a^2*x^2])/(I - a*x) + I*ArcSinh[a*x] - ArcTanh[Sqrt[1 + a^2*x^2]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 651

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1))
/(2*c*d*(p + 1)), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p
+ 2, 0]

Rule 5060

Int[E^(ArcTan[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[x^m*((1 - I*a*x)^((I*n + 1)/2)/((1 + I*a*x)^((I*n
 - 1)/2)*Sqrt[1 + a^2*x^2])), x] /; FreeQ[{a, m}, x] && IntegerQ[(I*n - 1)/2]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int \frac {e^{-3 i \tan ^{-1}(a x)}}{x} \, dx &=\int \frac {(1-i a x)^2}{x (1+i a x) \sqrt {1+a^2 x^2}} \, dx\\ &=\int \left (\frac {i a}{\sqrt {1+a^2 x^2}}+\frac {1}{x \sqrt {1+a^2 x^2}}-\frac {4 a}{(-i+a x) \sqrt {1+a^2 x^2}}\right ) \, dx\\ &=(i a) \int \frac {1}{\sqrt {1+a^2 x^2}} \, dx-(4 a) \int \frac {1}{(-i+a x) \sqrt {1+a^2 x^2}} \, dx+\int \frac {1}{x \sqrt {1+a^2 x^2}} \, dx\\ &=\frac {4 i \sqrt {1+a^2 x^2}}{i-a x}+i \sinh ^{-1}(a x)+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1+a^2 x}} \, dx,x,x^2\right )\\ &=\frac {4 i \sqrt {1+a^2 x^2}}{i-a x}+i \sinh ^{-1}(a x)+\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {1}{a^2}+\frac {x^2}{a^2}} \, dx,x,\sqrt {1+a^2 x^2}\right )}{a^2}\\ &=\frac {4 i \sqrt {1+a^2 x^2}}{i-a x}+i \sinh ^{-1}(a x)-\tanh ^{-1}\left (\sqrt {1+a^2 x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 55, normalized size = 1.06 \[ -\frac {4 i \sqrt {a^2 x^2+1}}{a x-i}-\log \left (\sqrt {a^2 x^2+1}+1\right )+i \sinh ^{-1}(a x)+\log (x) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(E^((3*I)*ArcTan[a*x])*x),x]

[Out]

((-4*I)*Sqrt[1 + a^2*x^2])/(-I + a*x) + I*ArcSinh[a*x] + Log[x] - Log[1 + Sqrt[1 + a^2*x^2]]

________________________________________________________________________________________

fricas [B]  time = 0.44, size = 100, normalized size = 1.92 \[ \frac {-4 i \, a x - {\left (a x - i\right )} \log \left (-a x + \sqrt {a^{2} x^{2} + 1} + 1\right ) + {\left (-i \, a x - 1\right )} \log \left (-a x + \sqrt {a^{2} x^{2} + 1}\right ) + {\left (a x - i\right )} \log \left (-a x + \sqrt {a^{2} x^{2} + 1} - 1\right ) - 4 i \, \sqrt {a^{2} x^{2} + 1} - 4}{a x - i} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^3*(a^2*x^2+1)^(3/2)/x,x, algorithm="fricas")

[Out]

(-4*I*a*x - (a*x - I)*log(-a*x + sqrt(a^2*x^2 + 1) + 1) + (-I*a*x - 1)*log(-a*x + sqrt(a^2*x^2 + 1)) + (a*x -
I)*log(-a*x + sqrt(a^2*x^2 + 1) - 1) - 4*I*sqrt(a^2*x^2 + 1) - 4)/(a*x - I)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {undef} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^3*(a^2*x^2+1)^(3/2)/x,x, algorithm="giac")

[Out]

undef

________________________________________________________________________________________

maple [B]  time = 0.17, size = 257, normalized size = 4.94 \[ \frac {\left (a^{2} x^{2}+1\right )^{\frac {3}{2}}}{3}+\sqrt {a^{2} x^{2}+1}-\arctanh \left (\frac {1}{\sqrt {a^{2} x^{2}+1}}\right )+\frac {i \left (\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )\right )^{\frac {5}{2}}}{a^{3} \left (x -\frac {i}{a}\right )^{3}}-\frac {\left (\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )\right )^{\frac {5}{2}}}{a^{2} \left (x -\frac {i}{a}\right )^{2}}+\frac {2 \left (\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )\right )^{\frac {3}{2}}}{3}+i a \sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )}\, x +\frac {i a \ln \left (\frac {i a +\left (x -\frac {i}{a}\right ) a^{2}}{\sqrt {a^{2}}}+\sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2}+2 i a \left (x -\frac {i}{a}\right )}\right )}{\sqrt {a^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1+I*a*x)^3*(a^2*x^2+1)^(3/2)/x,x)

[Out]

1/3*(a^2*x^2+1)^(3/2)+(a^2*x^2+1)^(1/2)-arctanh(1/(a^2*x^2+1)^(1/2))+I/a^3/(x-I/a)^3*((x-I/a)^2*a^2+2*I*a*(x-I
/a))^(5/2)-1/a^2/(x-I/a)^2*((x-I/a)^2*a^2+2*I*a*(x-I/a))^(5/2)+2/3*((x-I/a)^2*a^2+2*I*a*(x-I/a))^(3/2)+I*a*((x
-I/a)^2*a^2+2*I*a*(x-I/a))^(1/2)*x+I*a*ln((I*a+(x-I/a)*a^2)/(a^2)^(1/2)+((x-I/a)^2*a^2+2*I*a*(x-I/a))^(1/2))/(
a^2)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a^{2} x^{2} + 1\right )}^{\frac {3}{2}}}{{\left (i \, a x + 1\right )}^{3} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^3*(a^2*x^2+1)^(3/2)/x,x, algorithm="maxima")

[Out]

integrate((a^2*x^2 + 1)^(3/2)/((I*a*x + 1)^3*x), x)

________________________________________________________________________________________

mupad [B]  time = 0.43, size = 74, normalized size = 1.42 \[ -\mathrm {atanh}\left (\sqrt {a^2\,x^2+1}\right )+\frac {a\,\mathrm {asinh}\left (x\,\sqrt {a^2}\right )\,1{}\mathrm {i}}{\sqrt {a^2}}+\frac {a\,\sqrt {a^2\,x^2+1}\,4{}\mathrm {i}}{\left (-x\,\sqrt {a^2}+\frac {\sqrt {a^2}\,1{}\mathrm {i}}{a}\right )\,\sqrt {a^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2*x^2 + 1)^(3/2)/(x*(a*x*1i + 1)^3),x)

[Out]

(a*asinh(x*(a^2)^(1/2))*1i)/(a^2)^(1/2) - atanh((a^2*x^2 + 1)^(1/2)) + (a*(a^2*x^2 + 1)^(1/2)*4i)/((((a^2)^(1/
2)*1i)/a - x*(a^2)^(1/2))*(a^2)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ i \left (\int \frac {\sqrt {a^{2} x^{2} + 1}}{a^{3} x^{4} - 3 i a^{2} x^{3} - 3 a x^{2} + i x}\, dx + \int \frac {a^{2} x^{2} \sqrt {a^{2} x^{2} + 1}}{a^{3} x^{4} - 3 i a^{2} x^{3} - 3 a x^{2} + i x}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)**3*(a**2*x**2+1)**(3/2)/x,x)

[Out]

I*(Integral(sqrt(a**2*x**2 + 1)/(a**3*x**4 - 3*I*a**2*x**3 - 3*a*x**2 + I*x), x) + Integral(a**2*x**2*sqrt(a**
2*x**2 + 1)/(a**3*x**4 - 3*I*a**2*x**3 - 3*a*x**2 + I*x), x))

________________________________________________________________________________________