3.44 \(\int e^{-2 i \tan ^{-1}(a x)} x^3 \, dx\)

Optimal. Leaf size=49 \[ -\frac {2 \log (-a x+i)}{a^4}+\frac {2 i x}{a^3}+\frac {x^2}{a^2}-\frac {2 i x^3}{3 a}-\frac {x^4}{4} \]

[Out]

2*I*x/a^3+x^2/a^2-2/3*I*x^3/a-1/4*x^4-2*ln(I-a*x)/a^4

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5062, 77} \[ \frac {x^2}{a^2}+\frac {2 i x}{a^3}-\frac {2 \log (-a x+i)}{a^4}-\frac {2 i x^3}{3 a}-\frac {x^4}{4} \]

Antiderivative was successfully verified.

[In]

Int[x^3/E^((2*I)*ArcTan[a*x]),x]

[Out]

((2*I)*x)/a^3 + x^2/a^2 - (((2*I)/3)*x^3)/a - x^4/4 - (2*Log[I - a*x])/a^4

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 5062

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 - I*a*x)^((I*n)/2))/(1 + I*a*x)^((I*n)/2
), x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[(I*n - 1)/2]

Rubi steps

\begin {align*} \int e^{-2 i \tan ^{-1}(a x)} x^3 \, dx &=\int \frac {x^3 (1-i a x)}{1+i a x} \, dx\\ &=\int \left (\frac {2 i}{a^3}+\frac {2 x}{a^2}-\frac {2 i x^2}{a}-x^3-\frac {2}{a^3 (-i+a x)}\right ) \, dx\\ &=\frac {2 i x}{a^3}+\frac {x^2}{a^2}-\frac {2 i x^3}{3 a}-\frac {x^4}{4}-\frac {2 \log (i-a x)}{a^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 49, normalized size = 1.00 \[ -\frac {2 \log (-a x+i)}{a^4}+\frac {2 i x}{a^3}+\frac {x^2}{a^2}-\frac {2 i x^3}{3 a}-\frac {x^4}{4} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/E^((2*I)*ArcTan[a*x]),x]

[Out]

((2*I)*x)/a^3 + x^2/a^2 - (((2*I)/3)*x^3)/a - x^4/4 - (2*Log[I - a*x])/a^4

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 46, normalized size = 0.94 \[ -\frac {3 \, a^{4} x^{4} + 8 i \, a^{3} x^{3} - 12 \, a^{2} x^{2} - 24 i \, a x + 24 \, \log \left (\frac {a x - i}{a}\right )}{12 \, a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(1+I*a*x)^2*(a^2*x^2+1),x, algorithm="fricas")

[Out]

-1/12*(3*a^4*x^4 + 8*I*a^3*x^3 - 12*a^2*x^2 - 24*I*a*x + 24*log((a*x - I)/a))/a^4

________________________________________________________________________________________

giac [B]  time = 0.12, size = 80, normalized size = 1.63 \[ -\frac {{\left (a i x + 1\right )}^{4} {\left (\frac {20 \, i^{2}}{a i x + 1} - \frac {84 \, i^{4}}{{\left (a i x + 1\right )}^{3}} - \frac {54 \, i^{2}}{{\left (a i x + 1\right )}^{2}} + 3\right )}}{12 \, a^{4} i^{4}} + \frac {2 \, \log \left (\frac {1}{\sqrt {a^{2} x^{2} + 1} {\left | a \right |}}\right )}{a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(1+I*a*x)^2*(a^2*x^2+1),x, algorithm="giac")

[Out]

-1/12*(a*i*x + 1)^4*(20*i^2/(a*i*x + 1) - 84*i^4/(a*i*x + 1)^3 - 54*i^2/(a*i*x + 1)^2 + 3)/(a^4*i^4) + 2*log(1
/(sqrt(a^2*x^2 + 1)*abs(a)))/a^4

________________________________________________________________________________________

maple [A]  time = 0.05, size = 55, normalized size = 1.12 \[ -\frac {x^{4}}{4}-\frac {2 i x^{3}}{3 a}+\frac {x^{2}}{a^{2}}+\frac {2 i x}{a^{3}}-\frac {\ln \left (a^{2} x^{2}+1\right )}{a^{4}}-\frac {2 i \arctan \left (a x \right )}{a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(1+I*a*x)^2*(a^2*x^2+1),x)

[Out]

-1/4*x^4-2/3*I*x^3/a+x^2/a^2+2*I*x/a^3-1/a^4*ln(a^2*x^2+1)-2*I/a^4*arctan(a*x)

________________________________________________________________________________________

maxima [A]  time = 0.32, size = 44, normalized size = 0.90 \[ -\frac {i \, {\left (-3 i \, a^{3} x^{4} + 8 \, a^{2} x^{3} + 12 i \, a x^{2} - 24 \, x\right )}}{12 \, a^{3}} - \frac {2 \, \log \left (i \, a x + 1\right )}{a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(1+I*a*x)^2*(a^2*x^2+1),x, algorithm="maxima")

[Out]

-1/12*I*(-3*I*a^3*x^4 + 8*a^2*x^3 + 12*I*a*x^2 - 24*x)/a^3 - 2*log(I*a*x + 1)/a^4

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 43, normalized size = 0.88 \[ \frac {x^2}{a^2}-\frac {x^4}{4}-\frac {2\,\ln \left (x-\frac {1{}\mathrm {i}}{a}\right )}{a^4}+\frac {x\,2{}\mathrm {i}}{a^3}-\frac {x^3\,2{}\mathrm {i}}{3\,a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(a^2*x^2 + 1))/(a*x*1i + 1)^2,x)

[Out]

(x*2i)/a^3 - (2*log(x - 1i/a))/a^4 - x^4/4 - (x^3*2i)/(3*a) + x^2/a^2

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 42, normalized size = 0.86 \[ - \frac {x^{4}}{4} - \frac {2 i x^{3}}{3 a} + \frac {x^{2}}{a^{2}} + \frac {2 i x}{a^{3}} - \frac {2 \log {\left (i a x + 1 \right )}}{a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(1+I*a*x)**2*(a**2*x**2+1),x)

[Out]

-x**4/4 - 2*I*x**3/(3*a) + x**2/a**2 + 2*I*x/a**3 - 2*log(I*a*x + 1)/a**4

________________________________________________________________________________________