3.343 \(\int \frac {e^{n \tan ^{-1}(a x)}}{c+a^2 c x^2} \, dx\)

Optimal. Leaf size=18 \[ \frac {e^{n \tan ^{-1}(a x)}}{a c n} \]

[Out]

exp(n*arctan(a*x))/a/c/n

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {5071} \[ \frac {e^{n \tan ^{-1}(a x)}}{a c n} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcTan[a*x])/(c + a^2*c*x^2),x]

[Out]

E^(n*ArcTan[a*x])/(a*c*n)

Rule 5071

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[E^(n*ArcTan[a*x])/(a*c*n), x] /; Fre
eQ[{a, c, d, n}, x] && EqQ[d, a^2*c]

Rubi steps

\begin {align*} \int \frac {e^{n \tan ^{-1}(a x)}}{c+a^2 c x^2} \, dx &=\frac {e^{n \tan ^{-1}(a x)}}{a c n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 42, normalized size = 2.33 \[ \frac {(1-i a x)^{\frac {i n}{2}} (1+i a x)^{-\frac {i n}{2}}}{a c n} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(n*ArcTan[a*x])/(c + a^2*c*x^2),x]

[Out]

(1 - I*a*x)^((I/2)*n)/(a*c*n*(1 + I*a*x)^((I/2)*n))

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 17, normalized size = 0.94 \[ \frac {e^{\left (n \arctan \left (a x\right )\right )}}{a c n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))/(a^2*c*x^2+c),x, algorithm="fricas")

[Out]

e^(n*arctan(a*x))/(a*c*n)

________________________________________________________________________________________

giac [A]  time = 0.12, size = 17, normalized size = 0.94 \[ \frac {e^{\left (n \arctan \left (a x\right )\right )}}{a c n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))/(a^2*c*x^2+c),x, algorithm="giac")

[Out]

e^(n*arctan(a*x))/(a*c*n)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 18, normalized size = 1.00 \[ \frac {{\mathrm e}^{n \arctan \left (a x \right )}}{a c n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctan(a*x))/(a^2*c*x^2+c),x)

[Out]

exp(n*arctan(a*x))/a/c/n

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 17, normalized size = 0.94 \[ \frac {e^{\left (n \arctan \left (a x\right )\right )}}{a c n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctan(a*x))/(a^2*c*x^2+c),x, algorithm="maxima")

[Out]

e^(n*arctan(a*x))/(a*c*n)

________________________________________________________________________________________

mupad [B]  time = 0.63, size = 17, normalized size = 0.94 \[ \frac {{\mathrm {e}}^{n\,\mathrm {atan}\left (a\,x\right )}}{a\,c\,n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*atan(a*x))/(c + a^2*c*x^2),x)

[Out]

exp(n*atan(a*x))/(a*c*n)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \begin {cases} \tilde {\infty } x & \text {for}\: c = 0 \wedge n = 0 \\\tilde {\infty } \int e^{n \operatorname {atan}{\left (a x \right )}}\, dx & \text {for}\: c = 0 \\\frac {\operatorname {atan}{\left (a x \right )}}{a c} & \text {for}\: n = 0 \\\frac {e^{n \operatorname {atan}{\left (a x \right )}}}{a c n} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atan(a*x))/(a**2*c*x**2+c),x)

[Out]

Piecewise((zoo*x, Eq(c, 0) & Eq(n, 0)), (zoo*Integral(exp(n*atan(a*x)), x), Eq(c, 0)), (atan(a*x)/(a*c), Eq(n,
 0)), (exp(n*atan(a*x))/(a*c*n), True))

________________________________________________________________________________________