3.336 \(\int \frac {e^{-4 i \tan ^{-1}(a x)}}{(c+a^2 c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=69 \[ \frac {i c (1-i a x)^4}{3 a \left (a^2 c x^2+c\right )^{5/2}}-\frac {i c (1-i a x)^5}{15 a \left (a^2 c x^2+c\right )^{5/2}} \]

[Out]

1/3*I*c*(1-I*a*x)^4/a/(a^2*c*x^2+c)^(5/2)-1/15*I*c*(1-I*a*x)^5/a/(a^2*c*x^2+c)^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {5074, 659, 651} \[ \frac {i c (1-i a x)^4}{3 a \left (a^2 c x^2+c\right )^{5/2}}-\frac {i c (1-i a x)^5}{15 a \left (a^2 c x^2+c\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^((4*I)*ArcTan[a*x])*(c + a^2*c*x^2)^(3/2)),x]

[Out]

((I/3)*c*(1 - I*a*x)^4)/(a*(c + a^2*c*x^2)^(5/2)) - ((I/15)*c*(1 - I*a*x)^5)/(a*(c + a^2*c*x^2)^(5/2))

Rule 651

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1))
/(2*c*d*(p + 1)), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p
+ 2, 0]

Rule 659

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1)
)/(2*c*d*(m + p + 1)), x] + Dist[Simplify[m + 2*p + 2]/(2*d*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p,
 x], x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[Simplify[m + 2*p + 2
], 0]

Rule 5074

Int[E^(ArcTan[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[c^((I*n)/2), Int[(c + d*x^2)^(p
- (I*n)/2)*(1 - I*a*x)^(I*n), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[d, a^2*c] &&  !(IntegerQ[p] || GtQ[c, 0]
) && IGtQ[(I*n)/2, 0]

Rubi steps

\begin {align*} \int \frac {e^{-4 i \tan ^{-1}(a x)}}{\left (c+a^2 c x^2\right )^{3/2}} \, dx &=c^2 \int \frac {(1-i a x)^4}{\left (c+a^2 c x^2\right )^{7/2}} \, dx\\ &=\frac {i c (1-i a x)^4}{3 a \left (c+a^2 c x^2\right )^{5/2}}-\frac {1}{3} c^2 \int \frac {(1-i a x)^5}{\left (c+a^2 c x^2\right )^{7/2}} \, dx\\ &=\frac {i c (1-i a x)^4}{3 a \left (c+a^2 c x^2\right )^{5/2}}-\frac {i c (1-i a x)^5}{15 a \left (c+a^2 c x^2\right )^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 77, normalized size = 1.12 \[ \frac {(1-i a x)^{3/2} (a x-4 i) \sqrt {a^2 x^2+1}}{15 a c \sqrt {1+i a x} (a x-i)^2 \sqrt {a^2 c x^2+c}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(E^((4*I)*ArcTan[a*x])*(c + a^2*c*x^2)^(3/2)),x]

[Out]

((1 - I*a*x)^(3/2)*(-4*I + a*x)*Sqrt[1 + a^2*x^2])/(15*a*c*Sqrt[1 + I*a*x]*(-I + a*x)^2*Sqrt[c + a^2*c*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 67, normalized size = 0.97 \[ -\frac {\sqrt {a^{2} c x^{2} + c} {\left (a^{2} x^{2} - 3 i \, a x + 4\right )}}{15 \, a^{4} c^{2} x^{3} - 45 i \, a^{3} c^{2} x^{2} - 45 \, a^{2} c^{2} x + 15 i \, a c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^4*(a^2*x^2+1)^2/(a^2*c*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

-sqrt(a^2*c*x^2 + c)*(a^2*x^2 - 3*I*a*x + 4)/(15*a^4*c^2*x^3 - 45*I*a^3*c^2*x^2 - 45*a^2*c^2*x + 15*I*a*c^2)

________________________________________________________________________________________

giac [B]  time = 0.17, size = 134, normalized size = 1.94 \[ -\frac {2 \, {\left (5 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} + c}\right )}^{2} c i + 15 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} + c}\right )}^{3} \sqrt {c} + c^{2} i - 5 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} + c}\right )} c^{\frac {3}{2}}\right )}}{15 \, {\left (\sqrt {c} i - \sqrt {a^{2} c} x + \sqrt {a^{2} c x^{2} + c}\right )}^{5} a c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^4*(a^2*x^2+1)^2/(a^2*c*x^2+c)^(3/2),x, algorithm="giac")

[Out]

-2/15*(5*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 + c))^2*c*i + 15*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 + c))^3*sqrt(c) + c^
2*i - 5*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 + c))*c^(3/2))/((sqrt(c)*i - sqrt(a^2*c)*x + sqrt(a^2*c*x^2 + c))^5*a*
c)

________________________________________________________________________________________

maple [B]  time = 0.18, size = 307, normalized size = 4.45 \[ \frac {x}{c \sqrt {a^{2} c \,x^{2}+c}}-\frac {4 \left (\frac {i}{5 a c \left (x -\frac {i}{a}\right )^{2} \sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2} c +2 i a c \left (x -\frac {i}{a}\right )}}+\frac {3 i a \left (\frac {i}{3 a c \left (x -\frac {i}{a}\right ) \sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2} c +2 i a c \left (x -\frac {i}{a}\right )}}+\frac {i \left (2 \left (x -\frac {i}{a}\right ) a^{2} c +2 i a c \right )}{3 a \,c^{2} \sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2} c +2 i a c \left (x -\frac {i}{a}\right )}}\right )}{5}\right )}{a^{2}}+\frac {4 i \left (\frac {i}{3 a c \left (x -\frac {i}{a}\right ) \sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2} c +2 i a c \left (x -\frac {i}{a}\right )}}+\frac {i \left (2 \left (x -\frac {i}{a}\right ) a^{2} c +2 i a c \right )}{3 a \,c^{2} \sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2} c +2 i a c \left (x -\frac {i}{a}\right )}}\right )}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1+I*a*x)^4*(a^2*x^2+1)^2/(a^2*c*x^2+c)^(3/2),x)

[Out]

x/c/(a^2*c*x^2+c)^(1/2)-4/a^2*(1/5*I/a/c/(x-I/a)^2/((x-I/a)^2*a^2*c+2*I*a*c*(x-I/a))^(1/2)+3/5*I*a*(1/3*I/a/c/
(x-I/a)/((x-I/a)^2*a^2*c+2*I*a*c*(x-I/a))^(1/2)+1/3*I/a/c^2*(2*(x-I/a)*a^2*c+2*I*a*c)/((x-I/a)^2*a^2*c+2*I*a*c
*(x-I/a))^(1/2)))+4*I/a*(1/3*I/a/c/(x-I/a)/((x-I/a)^2*a^2*c+2*I*a*c*(x-I/a))^(1/2)+1/3*I/a/c^2*(2*(x-I/a)*a^2*
c+2*I*a*c)/((x-I/a)^2*a^2*c+2*I*a*c*(x-I/a))^(1/2))

________________________________________________________________________________________

maxima [B]  time = 0.33, size = 120, normalized size = 1.74 \[ -\frac {x}{15 \, \sqrt {a^{2} c x^{2} + c} c} - \frac {4 i}{5 \, \sqrt {a^{2} c x^{2} + c} a^{3} c x^{2} - 10 i \, \sqrt {a^{2} c x^{2} + c} a^{2} c x - 5 \, \sqrt {a^{2} c x^{2} + c} a c} - \frac {8 i}{15 i \, \sqrt {a^{2} c x^{2} + c} a^{2} c x + 15 \, \sqrt {a^{2} c x^{2} + c} a c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^4*(a^2*x^2+1)^2/(a^2*c*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

-1/15*x/(sqrt(a^2*c*x^2 + c)*c) - 4*I/(5*sqrt(a^2*c*x^2 + c)*a^3*c*x^2 - 10*I*sqrt(a^2*c*x^2 + c)*a^2*c*x - 5*
sqrt(a^2*c*x^2 + c)*a*c) - 8*I/(15*I*sqrt(a^2*c*x^2 + c)*a^2*c*x + 15*sqrt(a^2*c*x^2 + c)*a*c)

________________________________________________________________________________________

mupad [B]  time = 1.00, size = 45, normalized size = 0.65 \[ \frac {\sqrt {c\,\left (a^2\,x^2+1\right )}\,\left (a^2\,x^2-a\,x\,3{}\mathrm {i}+4\right )\,1{}\mathrm {i}}{15\,a\,c^2\,{\left (1+a\,x\,1{}\mathrm {i}\right )}^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2*x^2 + 1)^2/((c + a^2*c*x^2)^(3/2)*(a*x*1i + 1)^4),x)

[Out]

((c*(a^2*x^2 + 1))^(1/2)*(a^2*x^2 - a*x*3i + 4)*1i)/(15*a*c^2*(a*x*1i + 1)^3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a^{2} x^{2} + 1\right )^{2}}{\left (c \left (a^{2} x^{2} + 1\right )\right )^{\frac {3}{2}} \left (a x - i\right )^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)**4*(a**2*x**2+1)**2/(a**2*c*x**2+c)**(3/2),x)

[Out]

Integral((a**2*x**2 + 1)**2/((c*(a**2*x**2 + 1))**(3/2)*(a*x - I)**4), x)

________________________________________________________________________________________