3.334 \(\int \frac {e^{-2 i \tan ^{-1}(a x)}}{(c+a^2 c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=54 \[ \frac {x}{3 c \sqrt {a^2 c x^2+c}}+\frac {2 i (1-i a x)}{3 a \left (a^2 c x^2+c\right )^{3/2}} \]

[Out]

2/3*I*(1-I*a*x)/a/(a^2*c*x^2+c)^(3/2)+1/3*x/c/(a^2*c*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {5074, 653, 191} \[ \frac {x}{3 c \sqrt {a^2 c x^2+c}}+\frac {2 i (1-i a x)}{3 a \left (a^2 c x^2+c\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^((2*I)*ArcTan[a*x])*(c + a^2*c*x^2)^(3/2)),x]

[Out]

(((2*I)/3)*(1 - I*a*x))/(a*(c + a^2*c*x^2)^(3/2)) + x/(3*c*Sqrt[c + a^2*c*x^2])

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 653

Int[((d_) + (e_.)*(x_))^2*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)*(a + c*x^2)^(p + 1))/(c*(
p + 1)), x] - Dist[(e^2*(p + 2))/(c*(p + 1)), Int[(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e, p}, x] &&
EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && LtQ[p, -1]

Rule 5074

Int[E^(ArcTan[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[c^((I*n)/2), Int[(c + d*x^2)^(p
- (I*n)/2)*(1 - I*a*x)^(I*n), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[d, a^2*c] &&  !(IntegerQ[p] || GtQ[c, 0]
) && IGtQ[(I*n)/2, 0]

Rubi steps

\begin {align*} \int \frac {e^{-2 i \tan ^{-1}(a x)}}{\left (c+a^2 c x^2\right )^{3/2}} \, dx &=c \int \frac {(1-i a x)^2}{\left (c+a^2 c x^2\right )^{5/2}} \, dx\\ &=\frac {2 i (1-i a x)}{3 a \left (c+a^2 c x^2\right )^{3/2}}+\frac {1}{3} \int \frac {1}{\left (c+a^2 c x^2\right )^{3/2}} \, dx\\ &=\frac {2 i (1-i a x)}{3 a \left (c+a^2 c x^2\right )^{3/2}}+\frac {x}{3 c \sqrt {c+a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 78, normalized size = 1.44 \[ \frac {\sqrt {1-i a x} (2+i a x) \sqrt {a^2 x^2+1}}{3 a c \sqrt {1+i a x} (a x-i) \sqrt {a^2 c x^2+c}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(E^((2*I)*ArcTan[a*x])*(c + a^2*c*x^2)^(3/2)),x]

[Out]

(Sqrt[1 - I*a*x]*(2 + I*a*x)*Sqrt[1 + a^2*x^2])/(3*a*c*Sqrt[1 + I*a*x]*(-I + a*x)*Sqrt[c + a^2*c*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 47, normalized size = 0.87 \[ \frac {\sqrt {a^{2} c x^{2} + c} {\left (a x - 2 i\right )}}{3 \, a^{3} c^{2} x^{2} - 6 i \, a^{2} c^{2} x - 3 \, a c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^2*(a^2*x^2+1)/(a^2*c*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

sqrt(a^2*c*x^2 + c)*(a*x - 2*I)/(3*a^3*c^2*x^2 - 6*I*a^2*c^2*x - 3*a*c^2)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 75, normalized size = 1.39 \[ -\frac {2 \, \sqrt {a^{2} c} {\left (\sqrt {c} i - 3 \, \sqrt {a^{2} c} x + 3 \, \sqrt {a^{2} c x^{2} + c}\right )}}{3 \, {\left (\sqrt {c} i - \sqrt {a^{2} c} x + \sqrt {a^{2} c x^{2} + c}\right )}^{3} a^{2} c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^2*(a^2*x^2+1)/(a^2*c*x^2+c)^(3/2),x, algorithm="giac")

[Out]

-2/3*sqrt(a^2*c)*(sqrt(c)*i - 3*sqrt(a^2*c)*x + 3*sqrt(a^2*c*x^2 + c))/((sqrt(c)*i - sqrt(a^2*c)*x + sqrt(a^2*
c*x^2 + c))^3*a^2*c)

________________________________________________________________________________________

maple [B]  time = 0.18, size = 137, normalized size = 2.54 \[ -\frac {x}{c \sqrt {a^{2} c \,x^{2}+c}}-\frac {2 i \left (\frac {i}{3 a c \left (x -\frac {i}{a}\right ) \sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2} c +2 i a c \left (x -\frac {i}{a}\right )}}+\frac {i \left (2 \left (x -\frac {i}{a}\right ) a^{2} c +2 i a c \right )}{3 a \,c^{2} \sqrt {\left (x -\frac {i}{a}\right )^{2} a^{2} c +2 i a c \left (x -\frac {i}{a}\right )}}\right )}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1+I*a*x)^2*(a^2*x^2+1)/(a^2*c*x^2+c)^(3/2),x)

[Out]

-x/c/(a^2*c*x^2+c)^(1/2)-2*I/a*(1/3*I/a/c/(x-I/a)/((x-I/a)^2*a^2*c+2*I*a*c*(x-I/a))^(1/2)+1/3*I/a/c^2*(2*(x-I/
a)*a^2*c+2*I*a*c)/((x-I/a)^2*a^2*c+2*I*a*c*(x-I/a))^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 59, normalized size = 1.09 \[ \frac {x}{3 \, \sqrt {a^{2} c x^{2} + c} c} + \frac {2 i}{3 i \, \sqrt {a^{2} c x^{2} + c} a^{2} c x + 3 \, \sqrt {a^{2} c x^{2} + c} a c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)^2*(a^2*x^2+1)/(a^2*c*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

1/3*x/(sqrt(a^2*c*x^2 + c)*c) + 2*I/(3*I*sqrt(a^2*c*x^2 + c)*a^2*c*x + 3*sqrt(a^2*c*x^2 + c)*a*c)

________________________________________________________________________________________

mupad [B]  time = 0.65, size = 32, normalized size = 0.59 \[ \frac {a^3\,x^3+3\,a\,x+2{}\mathrm {i}}{3\,a\,{\left (c\,\left (a^2\,x^2+1\right )\right )}^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2*x^2 + 1)/((c + a^2*c*x^2)^(3/2)*(a*x*1i + 1)^2),x)

[Out]

(3*a*x + a^3*x^3 + 2i)/(3*a*(c*(a^2*x^2 + 1))^(3/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \frac {a^{2} x^{2}}{a^{4} c x^{4} \sqrt {a^{2} c x^{2} + c} - 2 i a^{3} c x^{3} \sqrt {a^{2} c x^{2} + c} - 2 i a c x \sqrt {a^{2} c x^{2} + c} - c \sqrt {a^{2} c x^{2} + c}}\, dx - \int \frac {1}{a^{4} c x^{4} \sqrt {a^{2} c x^{2} + c} - 2 i a^{3} c x^{3} \sqrt {a^{2} c x^{2} + c} - 2 i a c x \sqrt {a^{2} c x^{2} + c} - c \sqrt {a^{2} c x^{2} + c}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+I*a*x)**2*(a**2*x**2+1)/(a**2*c*x**2+c)**(3/2),x)

[Out]

-Integral(a**2*x**2/(a**4*c*x**4*sqrt(a**2*c*x**2 + c) - 2*I*a**3*c*x**3*sqrt(a**2*c*x**2 + c) - 2*I*a*c*x*sqr
t(a**2*c*x**2 + c) - c*sqrt(a**2*c*x**2 + c)), x) - Integral(1/(a**4*c*x**4*sqrt(a**2*c*x**2 + c) - 2*I*a**3*c
*x**3*sqrt(a**2*c*x**2 + c) - 2*I*a*c*x*sqrt(a**2*c*x**2 + c) - c*sqrt(a**2*c*x**2 + c)), x)

________________________________________________________________________________________