3.297 \(\int \frac {e^{-2 \tan ^{-1}(a x)}}{\sqrt {c+a^2 c x^2}} \, dx\)

Optimal. Leaf size=87 \[ -\frac {\left (\frac {2}{5}-\frac {i}{5}\right ) 2^{\frac {1}{2}+i} (1-i a x)^{\frac {1}{2}-i} \sqrt {a^2 x^2+1} \, _2F_1\left (\frac {1}{2}-i,\frac {1}{2}-i;\frac {3}{2}-i;\frac {1}{2} (1-i a x)\right )}{a \sqrt {a^2 c x^2+c}} \]

[Out]

(-2/5+1/5*I)*2^(1/2+I)*(1-I*a*x)^(1/2-I)*hypergeom([1/2-I, 1/2-I],[3/2-I],1/2-1/2*I*a*x)*(a^2*x^2+1)^(1/2)/a/(
a^2*c*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 87, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {5076, 5073, 69} \[ -\frac {\left (\frac {2}{5}-\frac {i}{5}\right ) 2^{\frac {1}{2}+i} (1-i a x)^{\frac {1}{2}-i} \sqrt {a^2 x^2+1} \, _2F_1\left (\frac {1}{2}-i,\frac {1}{2}-i;\frac {3}{2}-i;\frac {1}{2} (1-i a x)\right )}{a \sqrt {a^2 c x^2+c}} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^(2*ArcTan[a*x])*Sqrt[c + a^2*c*x^2]),x]

[Out]

((-2/5 + I/5)*2^(1/2 + I)*(1 - I*a*x)^(1/2 - I)*Sqrt[1 + a^2*x^2]*Hypergeometric2F1[1/2 - I, 1/2 - I, 3/2 - I,
 (1 - I*a*x)/2])/(a*Sqrt[c + a^2*c*x^2])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 5073

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - I*a*x)^(p + (I*n
)/2)*(1 + I*a*x)^(p - (I*n)/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c,
 0])

Rule 5076

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d*x^2)^FracP
art[p])/(1 + a^2*x^2)^FracPart[p], Int[(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
&& EqQ[d, a^2*c] &&  !(IntegerQ[p] || GtQ[c, 0])

Rubi steps

\begin {align*} \int \frac {e^{-2 \tan ^{-1}(a x)}}{\sqrt {c+a^2 c x^2}} \, dx &=\frac {\sqrt {1+a^2 x^2} \int \frac {e^{-2 \tan ^{-1}(a x)}}{\sqrt {1+a^2 x^2}} \, dx}{\sqrt {c+a^2 c x^2}}\\ &=\frac {\sqrt {1+a^2 x^2} \int (1-i a x)^{-\frac {1}{2}-i} (1+i a x)^{-\frac {1}{2}+i} \, dx}{\sqrt {c+a^2 c x^2}}\\ &=-\frac {\left (\frac {2}{5}-\frac {i}{5}\right ) 2^{\frac {1}{2}+i} (1-i a x)^{\frac {1}{2}-i} \sqrt {1+a^2 x^2} \, _2F_1\left (\frac {1}{2}-i,\frac {1}{2}-i;\frac {3}{2}-i;\frac {1}{2} (1-i a x)\right )}{a \sqrt {c+a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 87, normalized size = 1.00 \[ -\frac {\left (\frac {2}{5}-\frac {i}{5}\right ) 2^{\frac {1}{2}+i} (1-i a x)^{\frac {1}{2}-i} \sqrt {a^2 x^2+1} \, _2F_1\left (\frac {1}{2}-i,\frac {1}{2}-i;\frac {3}{2}-i;\frac {1}{2} (1-i a x)\right )}{a \sqrt {a^2 c x^2+c}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(E^(2*ArcTan[a*x])*Sqrt[c + a^2*c*x^2]),x]

[Out]

((-2/5 + I/5)*2^(1/2 + I)*(1 - I*a*x)^(1/2 - I)*Sqrt[1 + a^2*x^2]*Hypergeometric2F1[1/2 - I, 1/2 - I, 3/2 - I,
 (1 - I*a*x)/2])/(a*Sqrt[c + a^2*c*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {e^{\left (-2 \, \arctan \left (a x\right )\right )}}{\sqrt {a^{2} c x^{2} + c}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/exp(2*arctan(a*x))/(a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral(e^(-2*arctan(a*x))/sqrt(a^2*c*x^2 + c), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/exp(2*arctan(a*x))/(a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [F]  time = 0.30, size = 0, normalized size = 0.00 \[ \int \frac {{\mathrm e}^{-2 \arctan \left (a x \right )}}{\sqrt {a^{2} c \,x^{2}+c}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/exp(2*arctan(a*x))/(a^2*c*x^2+c)^(1/2),x)

[Out]

int(1/exp(2*arctan(a*x))/(a^2*c*x^2+c)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e^{\left (-2 \, \arctan \left (a x\right )\right )}}{\sqrt {a^{2} c x^{2} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/exp(2*arctan(a*x))/(a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(e^(-2*arctan(a*x))/sqrt(a^2*c*x^2 + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {e}}^{-2\,\mathrm {atan}\left (a\,x\right )}}{\sqrt {c\,a^2\,x^2+c}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(-2*atan(a*x))/(c + a^2*c*x^2)^(1/2),x)

[Out]

int(exp(-2*atan(a*x))/(c + a^2*c*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e^{- 2 \operatorname {atan}{\left (a x \right )}}}{\sqrt {c \left (a^{2} x^{2} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/exp(2*atan(a*x))/(a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(exp(-2*atan(a*x))/sqrt(c*(a**2*x**2 + 1)), x)

________________________________________________________________________________________