3.273 \(\int e^{-\tan ^{-1}(a x)} (c+a^2 c x^2)^p \, dx\)

Optimal. Leaf size=101 \[ \frac {2^{p+\left (1+\frac {i}{2}\right )} (1-i a x)^{p+\left (1-\frac {i}{2}\right )} \left (a^2 x^2+1\right )^{-p} \left (a^2 c x^2+c\right )^p \, _2F_1\left (-p-\frac {i}{2},p+\left (1-\frac {i}{2}\right );p+\left (2-\frac {i}{2}\right );\frac {1}{2} (1-i a x)\right )}{a (-2 i p-(1+2 i))} \]

[Out]

2^(1+1/2*I+p)*(1-I*a*x)^(1-1/2*I+p)*(a^2*c*x^2+c)^p*hypergeom([-1/2*I-p, 1-1/2*I+p],[2-1/2*I+p],1/2-1/2*I*a*x)
/a/(-1-2*I-2*I*p)/((a^2*x^2+1)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5076, 5073, 69} \[ \frac {2^{p+\left (1+\frac {i}{2}\right )} (1-i a x)^{p+\left (1-\frac {i}{2}\right )} \left (a^2 x^2+1\right )^{-p} \left (a^2 c x^2+c\right )^p \, _2F_1\left (-p-\frac {i}{2},p+\left (1-\frac {i}{2}\right );p+\left (2-\frac {i}{2}\right );\frac {1}{2} (1-i a x)\right )}{a (-2 i p-(1+2 i))} \]

Antiderivative was successfully verified.

[In]

Int[(c + a^2*c*x^2)^p/E^ArcTan[a*x],x]

[Out]

(2^((1 + I/2) + p)*(1 - I*a*x)^((1 - I/2) + p)*(c + a^2*c*x^2)^p*Hypergeometric2F1[-I/2 - p, (1 - I/2) + p, (2
 - I/2) + p, (1 - I*a*x)/2])/(a*((-1 - 2*I) - (2*I)*p)*(1 + a^2*x^2)^p)

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 5073

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - I*a*x)^(p + (I*n
)/2)*(1 + I*a*x)^(p - (I*n)/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c,
 0])

Rule 5076

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d*x^2)^FracP
art[p])/(1 + a^2*x^2)^FracPart[p], Int[(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
&& EqQ[d, a^2*c] &&  !(IntegerQ[p] || GtQ[c, 0])

Rubi steps

\begin {align*} \int e^{-\tan ^{-1}(a x)} \left (c+a^2 c x^2\right )^p \, dx &=\left (\left (1+a^2 x^2\right )^{-p} \left (c+a^2 c x^2\right )^p\right ) \int e^{-\tan ^{-1}(a x)} \left (1+a^2 x^2\right )^p \, dx\\ &=\left (\left (1+a^2 x^2\right )^{-p} \left (c+a^2 c x^2\right )^p\right ) \int (1-i a x)^{-\frac {i}{2}+p} (1+i a x)^{\frac {i}{2}+p} \, dx\\ &=\frac {2^{\left (1+\frac {i}{2}\right )+p} (1-i a x)^{\left (1-\frac {i}{2}\right )+p} \left (1+a^2 x^2\right )^{-p} \left (c+a^2 c x^2\right )^p \, _2F_1\left (-\frac {i}{2}-p,\left (1-\frac {i}{2}\right )+p;\left (2-\frac {i}{2}\right )+p;\frac {1}{2} (1-i a x)\right )}{a ((-1-2 i)-2 i p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 102, normalized size = 1.01 \[ \frac {i 2^{p+\frac {i}{2}} (1-i a x)^{p+\left (1-\frac {i}{2}\right )} \left (a^2 x^2+1\right )^{-p} \left (a^2 c x^2+c\right )^p \, _2F_1\left (-p-\frac {i}{2},p+\left (1-\frac {i}{2}\right );p+\left (2-\frac {i}{2}\right );\frac {1}{2} (1-i a x)\right )}{a \left (p+\left (1-\frac {i}{2}\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + a^2*c*x^2)^p/E^ArcTan[a*x],x]

[Out]

(I*2^(I/2 + p)*(1 - I*a*x)^((1 - I/2) + p)*(c + a^2*c*x^2)^p*Hypergeometric2F1[-1/2*I - p, (1 - I/2) + p, (2 -
 I/2) + p, (1 - I*a*x)/2])/(a*((1 - I/2) + p)*(1 + a^2*x^2)^p)

________________________________________________________________________________________

fricas [F]  time = 0.46, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (a^{2} c x^{2} + c\right )}^{p} e^{\left (-\arctan \left (a x\right )\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^p/exp(arctan(a*x)),x, algorithm="fricas")

[Out]

integral((a^2*c*x^2 + c)^p*e^(-arctan(a*x)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^p/exp(arctan(a*x)),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [F]  time = 0.31, size = 0, normalized size = 0.00 \[ \int \left (a^{2} c \,x^{2}+c \right )^{p} {\mathrm e}^{-\arctan \left (a x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2*c*x^2+c)^p/exp(arctan(a*x)),x)

[Out]

int((a^2*c*x^2+c)^p/exp(arctan(a*x)),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a^{2} c x^{2} + c\right )}^{p} e^{\left (-\arctan \left (a x\right )\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^p/exp(arctan(a*x)),x, algorithm="maxima")

[Out]

integrate((a^2*c*x^2 + c)^p*e^(-arctan(a*x)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {e}}^{-\mathrm {atan}\left (a\,x\right )}\,{\left (c\,a^2\,x^2+c\right )}^p \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(-atan(a*x))*(c + a^2*c*x^2)^p,x)

[Out]

int(exp(-atan(a*x))*(c + a^2*c*x^2)^p, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (c \left (a^{2} x^{2} + 1\right )\right )^{p} e^{- \operatorname {atan}{\left (a x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a**2*c*x**2+c)**p/exp(atan(a*x)),x)

[Out]

Integral((c*(a**2*x**2 + 1))**p*exp(-atan(a*x)), x)

________________________________________________________________________________________