3.184 \(\int e^{3 i \tan ^{-1}(a+b x)} \, dx\)

Optimal. Leaf size=94 \[ -\frac {2 i (i a+i b x+1)^{3/2}}{b \sqrt {-i a-i b x+1}}-\frac {3 i \sqrt {-i a-i b x+1} \sqrt {i a+i b x+1}}{b}-\frac {3 \sinh ^{-1}(a+b x)}{b} \]

[Out]

-3*arcsinh(b*x+a)/b-2*I*(1+I*a+I*b*x)^(3/2)/b/(1-I*a-I*b*x)^(1/2)-3*I*(1-I*a-I*b*x)^(1/2)*(1+I*a+I*b*x)^(1/2)/
b

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5093, 47, 50, 53, 619, 215} \[ -\frac {2 i (i a+i b x+1)^{3/2}}{b \sqrt {-i a-i b x+1}}-\frac {3 i \sqrt {-i a-i b x+1} \sqrt {i a+i b x+1}}{b}-\frac {3 \sinh ^{-1}(a+b x)}{b} \]

Antiderivative was successfully verified.

[In]

Int[E^((3*I)*ArcTan[a + b*x]),x]

[Out]

((-3*I)*Sqrt[1 - I*a - I*b*x]*Sqrt[1 + I*a + I*b*x])/b - ((2*I)*(1 + I*a + I*b*x)^(3/2))/(b*Sqrt[1 - I*a - I*b
*x]) - (3*ArcSinh[a + b*x])/b

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 53

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Int[1/Sqrt[a*c - b*(a - c)*x - b^2*x^2]
, x] /; FreeQ[{a, b, c, d}, x] && EqQ[b + d, 0] && GtQ[a + c, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 619

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*((-4*c)/(b^2 - 4*a*c))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rule 5093

Int[E^(ArcTan[(c_.)*((a_) + (b_.)*(x_))]*(n_.)), x_Symbol] :> Int[(1 - I*a*c - I*b*c*x)^((I*n)/2)/(1 + I*a*c +
 I*b*c*x)^((I*n)/2), x] /; FreeQ[{a, b, c, n}, x]

Rubi steps

\begin {align*} \int e^{3 i \tan ^{-1}(a+b x)} \, dx &=\int \frac {(1+i a+i b x)^{3/2}}{(1-i a-i b x)^{3/2}} \, dx\\ &=-\frac {2 i (1+i a+i b x)^{3/2}}{b \sqrt {1-i a-i b x}}-3 \int \frac {\sqrt {1+i a+i b x}}{\sqrt {1-i a-i b x}} \, dx\\ &=-\frac {3 i \sqrt {1-i a-i b x} \sqrt {1+i a+i b x}}{b}-\frac {2 i (1+i a+i b x)^{3/2}}{b \sqrt {1-i a-i b x}}-3 \int \frac {1}{\sqrt {1-i a-i b x} \sqrt {1+i a+i b x}} \, dx\\ &=-\frac {3 i \sqrt {1-i a-i b x} \sqrt {1+i a+i b x}}{b}-\frac {2 i (1+i a+i b x)^{3/2}}{b \sqrt {1-i a-i b x}}-3 \int \frac {1}{\sqrt {(1-i a) (1+i a)+2 a b x+b^2 x^2}} \, dx\\ &=-\frac {3 i \sqrt {1-i a-i b x} \sqrt {1+i a+i b x}}{b}-\frac {2 i (1+i a+i b x)^{3/2}}{b \sqrt {1-i a-i b x}}-\frac {3 \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{4 b^2}}} \, dx,x,2 a b+2 b^2 x\right )}{2 b^2}\\ &=-\frac {3 i \sqrt {1-i a-i b x} \sqrt {1+i a+i b x}}{b}-\frac {2 i (1+i a+i b x)^{3/2}}{b \sqrt {1-i a-i b x}}-\frac {3 \sinh ^{-1}(a+b x)}{b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 45, normalized size = 0.48 \[ -\frac {3 \sinh ^{-1}(a+b x)}{b}+\frac {\sqrt {(a+b x)^2+1} \left (\frac {4}{a+b x+i}-i\right )}{b} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^((3*I)*ArcTan[a + b*x]),x]

[Out]

(Sqrt[1 + (a + b*x)^2]*(-I + 4/(I + a + b*x)))/b - (3*ArcSinh[a + b*x])/b

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 102, normalized size = 1.09 \[ \frac {{\left (-i \, a + 8\right )} b x - i \, a^{2} + {\left (6 \, b x + 6 \, a + 6 i\right )} \log \left (-b x - a + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}\right ) + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} {\left (-2 i \, b x - 2 i \, a + 10\right )} + 9 \, a + 8 i}{2 \, b^{2} x + {\left (2 \, a + 2 i\right )} b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x, algorithm="fricas")

[Out]

((-I*a + 8)*b*x - I*a^2 + (6*b*x + 6*a + 6*I)*log(-b*x - a + sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) + sqrt(b^2*x^2
 + 2*a*b*x + a^2 + 1)*(-2*I*b*x - 2*I*a + 10) + 9*a + 8*I)/(2*b^2*x + (2*a + 2*I)*b)

________________________________________________________________________________________

giac [B]  time = 0.21, size = 183, normalized size = 1.95 \[ -\frac {\sqrt {{\left (b x + a\right )}^{2} + 1} i}{b} + \frac {\log \left (3 \, {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )}^{2} a b + a^{3} b + 2 \, {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )}^{2} b i + 2 \, a^{2} b i + {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )}^{3} {\left | b \right |} + 3 \, {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )} a^{2} {\left | b \right |} + 4 \, {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )} a i {\left | b \right |} - a b - {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )} {\left | b \right |}\right )}{{\left | b \right |}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x, algorithm="giac")

[Out]

-sqrt((b*x + a)^2 + 1)*i/b + log(3*(x*abs(b) - sqrt((b*x + a)^2 + 1))^2*a*b + a^3*b + 2*(x*abs(b) - sqrt((b*x
+ a)^2 + 1))^2*b*i + 2*a^2*b*i + (x*abs(b) - sqrt((b*x + a)^2 + 1))^3*abs(b) + 3*(x*abs(b) - sqrt((b*x + a)^2
+ 1))*a^2*abs(b) + 4*(x*abs(b) - sqrt((b*x + a)^2 + 1))*a*i*abs(b) - a*b - (x*abs(b) - sqrt((b*x + a)^2 + 1))*
abs(b))/abs(b)

________________________________________________________________________________________

maple [B]  time = 0.11, size = 362, normalized size = 3.85 \[ -\frac {5 i}{b \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}+\frac {3 a}{b \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}+\frac {3 a^{2} x}{\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}+\frac {3 a^{3}}{b \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {3 \ln \left (\frac {b^{2} x +a b}{\sqrt {b^{2}}}+\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\right )}{\sqrt {b^{2}}}-\frac {4 i a^{2}}{b \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}+\frac {i a^{3} x}{\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}+\frac {i a^{4}}{b \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {i b \,x^{2}}{\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {5 i a x}{\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}+\frac {2 \left (i a +1\right )^{3} \left (2 b^{2} x +2 a b \right )}{\left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}+\frac {3 x}{\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x)

[Out]

-5*I/b/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)+3/b*a/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)+3*a^2/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)*x
+3/b*a^3/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)-3*ln((b^2*x+a*b)/(b^2)^(1/2)+(b^2*x^2+2*a*b*x+a^2+1)^(1/2))/(b^2)^(1/2)
-4*I/b*a^2/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)+I*a^3/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)*x+I/b*a^4/(b^2*x^2+2*a*b*x+a^2+1)
^(1/2)-I*b*x^2/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)-5*I*a*x/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)+2*(1+I*a)^3*(2*b^2*x+2*a*b)
/(4*b^2*(a^2+1)-4*a^2*b^2)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)+3*x/(b^2*x^2+2*a*b*x+a^2+1)^(1/2)

________________________________________________________________________________________

maxima [B]  time = 0.34, size = 740, normalized size = 7.87 \[ -\frac {6 i \, a^{3} b^{2} x}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} + \frac {5 i \, {\left (a^{2} + 1\right )} a b^{2} x}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} - \frac {i \, {\left (a^{2} + 1\right )} a^{2} b}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} - \frac {2 \, {\left (-3 i \, a b^{2} - 3 \, b^{2}\right )} a^{2} x}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} + \frac {{\left (-3 i \, a^{2} b - 6 \, a b + 3 i \, b\right )} a b x}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} - \frac {{\left (-4 i \, a^{3} - 12 \, a^{2} + 12 i \, a + 4\right )} b^{2} x}{4 \, {\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} - \frac {i \, b x^{2}}{\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} + \frac {{\left (-3 i \, a^{2} b - 6 \, a b + 3 i \, b\right )} a^{2}}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} - \frac {{\left (-i \, a^{3} - 3 \, a^{2} + 3 i \, a + 1\right )} a b}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} + \frac {{\left (-3 i \, a b^{2} - 3 \, b^{2}\right )} {\left (a^{2} + 1\right )} x}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}} + \frac {3 i \, a \operatorname {arsinh}\left (\frac {2 \, {\left (b^{2} x + a b\right )}}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}}}\right )}{b} - \frac {{\left (-3 i \, a b^{2} - 3 \, b^{2}\right )} {\left (a^{2} + 1\right )} a}{{\left (a^{2} b^{2} - {\left (a^{2} + 1\right )} b^{2}\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} b} + \frac {-2 i \, a^{2} - 2 i}{\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} b} + \frac {{\left (-3 i \, a b^{2} - 3 \, b^{2}\right )} \operatorname {arsinh}\left (\frac {2 \, {\left (b^{2} x + a b\right )}}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}}}\right )}{b^{3}} - \frac {-3 i \, a^{2} b - 6 \, a b + 3 i \, b}{\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x, algorithm="maxima")

[Out]

-6*I*a^3*b^2*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) + 5*I*(a^2 + 1)*a*b^2*x/((a^2*b^2
 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - I*(a^2 + 1)*a^2*b/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x
^2 + 2*a*b*x + a^2 + 1)) - 2*(-3*I*a*b^2 - 3*b^2)*a^2*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^
2 + 1)) + (-3*I*a^2*b - 6*a*b + 3*I*b)*a*b*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - 1
/4*(-4*I*a^3 - 12*a^2 + 12*I*a + 4)*b^2*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - I*b*
x^2/sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1) + (-3*I*a^2*b - 6*a*b + 3*I*b)*a^2/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x
^2 + 2*a*b*x + a^2 + 1)) - (-I*a^3 - 3*a^2 + 3*I*a + 1)*a*b/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x
+ a^2 + 1)) + (-3*I*a*b^2 - 3*b^2)*(a^2 + 1)*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) +
 3*I*a*arcsinh(2*(b^2*x + a*b)/sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2))/b - (-3*I*a*b^2 - 3*b^2)*(a^2 + 1)*a/((a^2*
b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*b) + (-2*I*a^2 - 2*I)/(sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1
)*b) + (-3*I*a*b^2 - 3*b^2)*arcsinh(2*(b^2*x + a*b)/sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2))/b^3 - (-3*I*a^2*b - 6*
a*b + 3*I*b)/(sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*b^2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (1+a\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}\right )}^3}{{\left ({\left (a+b\,x\right )}^2+1\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*1i + b*x*1i + 1)^3/((a + b*x)^2 + 1)^(3/2),x)

[Out]

int((a*1i + b*x*1i + 1)^3/((a + b*x)^2 + 1)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - i \left (\int \frac {i}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx + \int \left (- \frac {3 a}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\right )\, dx + \int \frac {a^{3}}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx + \int \left (- \frac {3 i a^{2}}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\right )\, dx + \int \left (- \frac {3 b x}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\right )\, dx + \int \frac {b^{3} x^{3}}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx + \int \left (- \frac {3 i b^{2} x^{2}}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\right )\, dx + \int \frac {3 a b^{2} x^{2}}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx + \int \frac {3 a^{2} b x}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\, dx + \int \left (- \frac {6 i a b x}{a^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + 2 a b x \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + b^{2} x^{2} \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1} + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}\right )\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*(b*x+a))**3/(1+(b*x+a)**2)**(3/2),x)

[Out]

-I*(Integral(I/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**
2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(-3*a/(a**2*
sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*
a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(a**3/(a**2*sqrt(a**2 + 2*a*b*x +
 b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1
) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(-3*I*a**2/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)
+ 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 +
2*a*b*x + b**2*x**2 + 1)), x) + Integral(-3*b*x/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2
 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2
 + 1)), x) + Integral(b**3*x**3/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**
2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Int
egral(-3*I*b**2*x**2/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)
 + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(3*a*b
**2*x**2/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2
*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(3*a**2*b*x/(a**2*
sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*
a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(-6*I*a*b*x/(a**2*sqrt(a**2 + 2*a
*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x*
*2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x))

________________________________________________________________________________________