3.18 \(\int \frac {e^{2 i \tan ^{-1}(a x)}}{x^4} \, dx\)

Optimal. Leaf size=48 \[ -2 i a^3 \log (x)+2 i a^3 \log (a x+i)+\frac {2 a^2}{x}-\frac {i a}{x^2}-\frac {1}{3 x^3} \]

[Out]

-1/3/x^3-I*a/x^2+2*a^2/x-2*I*a^3*ln(x)+2*I*a^3*ln(I+a*x)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5062, 77} \[ \frac {2 a^2}{x}-2 i a^3 \log (x)+2 i a^3 \log (a x+i)-\frac {i a}{x^2}-\frac {1}{3 x^3} \]

Antiderivative was successfully verified.

[In]

Int[E^((2*I)*ArcTan[a*x])/x^4,x]

[Out]

-1/(3*x^3) - (I*a)/x^2 + (2*a^2)/x - (2*I)*a^3*Log[x] + (2*I)*a^3*Log[I + a*x]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 5062

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 - I*a*x)^((I*n)/2))/(1 + I*a*x)^((I*n)/2
), x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[(I*n - 1)/2]

Rubi steps

\begin {align*} \int \frac {e^{2 i \tan ^{-1}(a x)}}{x^4} \, dx &=\int \frac {1+i a x}{x^4 (1-i a x)} \, dx\\ &=\int \left (\frac {1}{x^4}+\frac {2 i a}{x^3}-\frac {2 a^2}{x^2}-\frac {2 i a^3}{x}+\frac {2 i a^4}{i+a x}\right ) \, dx\\ &=-\frac {1}{3 x^3}-\frac {i a}{x^2}+\frac {2 a^2}{x}-2 i a^3 \log (x)+2 i a^3 \log (i+a x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 48, normalized size = 1.00 \[ -2 i a^3 \log (x)+2 i a^3 \log (a x+i)+\frac {2 a^2}{x}-\frac {i a}{x^2}-\frac {1}{3 x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[E^((2*I)*ArcTan[a*x])/x^4,x]

[Out]

-1/3*1/x^3 - (I*a)/x^2 + (2*a^2)/x - (2*I)*a^3*Log[x] + (2*I)*a^3*Log[I + a*x]

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 47, normalized size = 0.98 \[ \frac {-6 i \, a^{3} x^{3} \log \relax (x) + 6 i \, a^{3} x^{3} \log \left (\frac {a x + i}{a}\right ) + 6 \, a^{2} x^{2} - 3 i \, a x - 1}{3 \, x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*a*x)^2/(a^2*x^2+1)/x^4,x, algorithm="fricas")

[Out]

1/3*(-6*I*a^3*x^3*log(x) + 6*I*a^3*x^3*log((a*x + I)/a) + 6*a^2*x^2 - 3*I*a*x - 1)/x^3

________________________________________________________________________________________

giac [A]  time = 0.14, size = 42, normalized size = 0.88 \[ 2 \, a^{3} i \log \left (a x + i\right ) - 2 \, a^{3} i \log \left ({\left | x \right |}\right ) + \frac {6 \, a^{2} x^{2} - 3 \, a i x - 1}{3 \, x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*a*x)^2/(a^2*x^2+1)/x^4,x, algorithm="giac")

[Out]

2*a^3*i*log(a*x + i) - 2*a^3*i*log(abs(x)) + 1/3*(6*a^2*x^2 - 3*a*i*x - 1)/x^3

________________________________________________________________________________________

maple [A]  time = 0.05, size = 55, normalized size = 1.15 \[ -\frac {1}{3 x^{3}}-2 i a^{3} \ln \relax (x )-\frac {i a}{x^{2}}+\frac {2 a^{2}}{x}+i a^{3} \ln \left (a^{2} x^{2}+1\right )+2 a^{3} \arctan \left (a x \right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+I*a*x)^2/(a^2*x^2+1)/x^4,x)

[Out]

-1/3/x^3-2*I*a^3*ln(x)-I*a/x^2+2*a^2/x+I*a^3*ln(a^2*x^2+1)+2*a^3*arctan(a*x)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 51, normalized size = 1.06 \[ 2 \, a^{3} \arctan \left (a x\right ) + i \, a^{3} \log \left (a^{2} x^{2} + 1\right ) - 2 i \, a^{3} \log \relax (x) + \frac {6 \, a^{2} x^{2} - 3 i \, a x - 1}{3 \, x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*a*x)^2/(a^2*x^2+1)/x^4,x, algorithm="maxima")

[Out]

2*a^3*arctan(a*x) + I*a^3*log(a^2*x^2 + 1) - 2*I*a^3*log(x) + 1/3*(6*a^2*x^2 - 3*I*a*x - 1)/x^3

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 34, normalized size = 0.71 \[ 4\,a^3\,\mathrm {atan}\left (2\,a\,x+1{}\mathrm {i}\right )-\frac {-2\,a^2\,x^2+a\,x\,1{}\mathrm {i}+\frac {1}{3}}{x^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x*1i + 1)^2/(x^4*(a^2*x^2 + 1)),x)

[Out]

4*a^3*atan(2*a*x + 1i) - (a*x*1i - 2*a^2*x^2 + 1/3)/x^3

________________________________________________________________________________________

sympy [A]  time = 0.21, size = 54, normalized size = 1.12 \[ - 2 a^{3} \left (i \log {\left (4 a^{4} x \right )} - i \log {\left (4 a^{4} x + 4 i a^{3} \right )}\right ) - \frac {- 6 a^{2} x^{2} + 3 i a x + 1}{3 x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+I*a*x)**2/(a**2*x**2+1)/x**4,x)

[Out]

-2*a**3*(I*log(4*a**4*x) - I*log(4*a**4*x + 4*I*a**3)) - (-6*a**2*x**2 + 3*I*a*x + 1)/(3*x**3)

________________________________________________________________________________________