3.103 \(\int \frac {(a+b \cos ^{-1}(\frac {\sqrt {1-c x}}{\sqrt {1+c x}}))^2}{1-c^2 x^2} \, dx\)

Optimal. Leaf size=207 \[ \frac {i b \text {Li}_2\left (-e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )}\right ) \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )}{c}+\frac {i \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^3}{3 b c}-\frac {\log \left (1+e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )}\right ) \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^2}{c}-\frac {b^2 \text {Li}_3\left (-e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )}\right )}{2 c} \]

[Out]

1/3*I*(a+b*arccos((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^3/b/c-(a+b*arccos((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2*ln(1+((-c*
x+1)^(1/2)/(c*x+1)^(1/2)+I*(1-(-c*x+1)/(c*x+1))^(1/2))^2)/c+I*b*(a+b*arccos((-c*x+1)^(1/2)/(c*x+1)^(1/2)))*pol
ylog(2,-((-c*x+1)^(1/2)/(c*x+1)^(1/2)+I*(1-(-c*x+1)/(c*x+1))^(1/2))^2)/c-1/2*b^2*polylog(3,-((-c*x+1)^(1/2)/(c
*x+1)^(1/2)+I*(1-(-c*x+1)/(c*x+1))^(1/2))^2)/c

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 207, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.175, Rules used = {6681, 4626, 3719, 2190, 2531, 2282, 6589} \[ \frac {i b \text {PolyLog}\left (2,-e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )}\right ) \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )}{c}-\frac {b^2 \text {PolyLog}\left (3,-e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )}\right )}{2 c}+\frac {i \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^3}{3 b c}-\frac {\log \left (1+e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )}\right ) \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^2}{c} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCos[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2/(1 - c^2*x^2),x]

[Out]

((I/3)*(a + b*ArcCos[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^3)/(b*c) - ((a + b*ArcCos[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2*L
og[1 + E^((2*I)*ArcCos[Sqrt[1 - c*x]/Sqrt[1 + c*x]])])/c + (I*b*(a + b*ArcCos[Sqrt[1 - c*x]/Sqrt[1 + c*x]])*Po
lyLog[2, -E^((2*I)*ArcCos[Sqrt[1 - c*x]/Sqrt[1 + c*x]])])/c - (b^2*PolyLog[3, -E^((2*I)*ArcCos[Sqrt[1 - c*x]/S
qrt[1 + c*x]])])/(2*c)

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 3719

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(I*(c + d*x)^(m + 1))/(d*(m + 1)), x
] - Dist[2*I, Int[((c + d*x)^m*E^(2*I*(e + f*x)))/(1 + E^(2*I*(e + f*x))), x], x] /; FreeQ[{c, d, e, f}, x] &&
 IGtQ[m, 0]

Rule 4626

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> -Subst[Int[(a + b*x)^n/Cot[x], x], x, ArcCos[c
*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 6681

Int[((a_.) + (b_.)*(F_)[((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]])^(n_.)/((A_.) + (C_.)*(x_)^
2), x_Symbol] :> Dist[(2*e*g)/(C*(e*f - d*g)), Subst[Int[(a + b*F[c*x])^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g*x
]], x] /; FreeQ[{a, b, c, d, e, f, g, A, C, F}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[e*f + d*g, 0] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{1-c^2 x^2} \, dx &=-\frac {\operatorname {Subst}\left (\int \frac {\left (a+b \cos ^{-1}(x)\right )^2}{x} \, dx,x,\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}{c}\\ &=\frac {\operatorname {Subst}\left (\int (a+b x)^2 \tan (x) \, dx,x,\cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )}{c}\\ &=\frac {i \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^3}{3 b c}-\frac {(2 i) \operatorname {Subst}\left (\int \frac {e^{2 i x} (a+b x)^2}{1+e^{2 i x}} \, dx,x,\cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )}{c}\\ &=\frac {i \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^3}{3 b c}-\frac {\left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2 \log \left (1+e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{c}+\frac {(2 b) \operatorname {Subst}\left (\int (a+b x) \log \left (1+e^{2 i x}\right ) \, dx,x,\cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )}{c}\\ &=\frac {i \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^3}{3 b c}-\frac {\left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2 \log \left (1+e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{c}+\frac {i b \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right ) \text {Li}_2\left (-e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{c}-\frac {\left (i b^2\right ) \operatorname {Subst}\left (\int \text {Li}_2\left (-e^{2 i x}\right ) \, dx,x,\cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )}{c}\\ &=\frac {i \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^3}{3 b c}-\frac {\left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2 \log \left (1+e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{c}+\frac {i b \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right ) \text {Li}_2\left (-e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{c}-\frac {b^2 \operatorname {Subst}\left (\int \frac {\text {Li}_2(-x)}{x} \, dx,x,e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{2 c}\\ &=\frac {i \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^3}{3 b c}-\frac {\left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2 \log \left (1+e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{c}+\frac {i b \left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right ) \text {Li}_2\left (-e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{c}-\frac {b^2 \text {Li}_3\left (-e^{2 i \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{2 c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 0.73, size = 0, normalized size = 0.00 \[ \int \frac {\left (a+b \cos ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{1-c^2 x^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(a + b*ArcCos[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2/(1 - c^2*x^2),x]

[Out]

Integrate[(a + b*ArcCos[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2/(1 - c^2*x^2), x]

________________________________________________________________________________________

fricas [F]  time = 0.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {b^{2} \arccos \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right )^{2} + 2 \, a b \arccos \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right ) + a^{2}}{c^{2} x^{2} - 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccos((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/(-c^2*x^2+1),x, algorithm="fricas")

[Out]

integral(-(b^2*arccos(sqrt(-c*x + 1)/sqrt(c*x + 1))^2 + 2*a*b*arccos(sqrt(-c*x + 1)/sqrt(c*x + 1)) + a^2)/(c^2
*x^2 - 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {{\left (b \arccos \left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right ) + a\right )}^{2}}{c^{2} x^{2} - 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccos((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/(-c^2*x^2+1),x, algorithm="giac")

[Out]

integrate(-(b*arccos(sqrt(-c*x + 1)/sqrt(c*x + 1)) + a)^2/(c^2*x^2 - 1), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 401, normalized size = 1.94 \[ -\frac {a^{2} \ln \left (c x -1\right )}{2 c}+\frac {a^{2} \ln \left (c x +1\right )}{2 c}+\frac {i b^{2} \arccos \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{3}}{3 c}-\frac {b^{2} \arccos \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2} \ln \left (1+\left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}+i \sqrt {1-\frac {-c x +1}{c x +1}}\right )^{2}\right )}{c}+\frac {i b^{2} \arccos \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \polylog \left (2, -\left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}+i \sqrt {1-\frac {-c x +1}{c x +1}}\right )^{2}\right )}{c}-\frac {b^{2} \polylog \left (3, -\left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}+i \sqrt {1-\frac {-c x +1}{c x +1}}\right )^{2}\right )}{2 c}+\frac {i a b \arccos \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2}}{c}-\frac {2 a b \arccos \left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \ln \left (1+\left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}+i \sqrt {1-\frac {-c x +1}{c x +1}}\right )^{2}\right )}{c}+\frac {i a b \polylog \left (2, -\left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}+i \sqrt {1-\frac {-c x +1}{c x +1}}\right )^{2}\right )}{c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccos((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/(-c^2*x^2+1),x)

[Out]

-1/2*a^2/c*ln(c*x-1)+1/2*a^2/c*ln(c*x+1)+1/3*I*b^2/c*arccos((-c*x+1)^(1/2)/(c*x+1)^(1/2))^3-b^2/c*arccos((-c*x
+1)^(1/2)/(c*x+1)^(1/2))^2*ln(1+((-c*x+1)^(1/2)/(c*x+1)^(1/2)+I*(1-(-c*x+1)/(c*x+1))^(1/2))^2)+I*b^2/c*arccos(
(-c*x+1)^(1/2)/(c*x+1)^(1/2))*polylog(2,-((-c*x+1)^(1/2)/(c*x+1)^(1/2)+I*(1-(-c*x+1)/(c*x+1))^(1/2))^2)-1/2*b^
2*polylog(3,-((-c*x+1)^(1/2)/(c*x+1)^(1/2)+I*(1-(-c*x+1)/(c*x+1))^(1/2))^2)/c+I*a*b/c*arccos((-c*x+1)^(1/2)/(c
*x+1)^(1/2))^2-2*a*b/c*arccos((-c*x+1)^(1/2)/(c*x+1)^(1/2))*ln(1+((-c*x+1)^(1/2)/(c*x+1)^(1/2)+I*(1-(-c*x+1)/(
c*x+1))^(1/2))^2)+I*a*b/c*polylog(2,-((-c*x+1)^(1/2)/(c*x+1)^(1/2)+I*(1-(-c*x+1)/(c*x+1))^(1/2))^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{2} \, a^{2} {\left (\frac {\log \left (c x + 1\right )}{c} - \frac {\log \left (c x - 1\right )}{c}\right )} - \int \frac {b^{2} \arctan \left (\sqrt {2} \sqrt {c} \sqrt {x}, \sqrt {-c x + 1}\right )^{2} + 2 \, a b \arctan \left (\sqrt {2} \sqrt {c} \sqrt {x}, \sqrt {-c x + 1}\right )}{c^{2} x^{2} - 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccos((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/(-c^2*x^2+1),x, algorithm="maxima")

[Out]

1/2*a^2*(log(c*x + 1)/c - log(c*x - 1)/c) - integrate((b^2*arctan2(sqrt(2)*sqrt(c)*sqrt(x), sqrt(-c*x + 1))^2
+ 2*a*b*arctan2(sqrt(2)*sqrt(c)*sqrt(x), sqrt(-c*x + 1)))/(c^2*x^2 - 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int -\frac {{\left (a+b\,\mathrm {acos}\left (\frac {\sqrt {1-c\,x}}{\sqrt {c\,x+1}}\right )\right )}^2}{c^2\,x^2-1} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(a + b*acos((1 - c*x)^(1/2)/(c*x + 1)^(1/2)))^2/(c^2*x^2 - 1),x)

[Out]

int(-(a + b*acos((1 - c*x)^(1/2)/(c*x + 1)^(1/2)))^2/(c^2*x^2 - 1), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acos((-c*x+1)**(1/2)/(c*x+1)**(1/2)))**2/(-c**2*x**2+1),x)

[Out]

Timed out

________________________________________________________________________________________