3.72 \(\int \frac {(f+g x) (a+b \sin ^{-1}(c x))^2}{\sqrt {d-c^2 d x^2}} \, dx\)

Optimal. Leaf size=171 \[ \frac {f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c \sqrt {d-c^2 d x^2}}-\frac {g \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 \sqrt {d-c^2 d x^2}}+\frac {2 b g x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{c \sqrt {d-c^2 d x^2}}+\frac {2 b^2 g \left (1-c^2 x^2\right )}{c^2 \sqrt {d-c^2 d x^2}} \]

[Out]

2*b^2*g*(-c^2*x^2+1)/c^2/(-c^2*d*x^2+d)^(1/2)-g*(-c^2*x^2+1)*(a+b*arcsin(c*x))^2/c^2/(-c^2*d*x^2+d)^(1/2)+2*b*
g*x*(a+b*arcsin(c*x))*(-c^2*x^2+1)^(1/2)/c/(-c^2*d*x^2+d)^(1/2)+1/3*f*(a+b*arcsin(c*x))^3*(-c^2*x^2+1)^(1/2)/b
/c/(-c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.37, antiderivative size = 207, normalized size of antiderivative = 1.21, number of steps used = 8, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {4777, 4763, 4641, 4677, 4619, 261} \[ \frac {f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c \sqrt {d-c^2 d x^2}}+\frac {2 a b g x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}-\frac {g \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 \sqrt {d-c^2 d x^2}}+\frac {2 b^2 g \left (1-c^2 x^2\right )}{c^2 \sqrt {d-c^2 d x^2}}+\frac {2 b^2 g x \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{c \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((f + g*x)*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(2*a*b*g*x*Sqrt[1 - c^2*x^2])/(c*Sqrt[d - c^2*d*x^2]) + (2*b^2*g*(1 - c^2*x^2))/(c^2*Sqrt[d - c^2*d*x^2]) + (2
*b^2*g*x*Sqrt[1 - c^2*x^2]*ArcSin[c*x])/(c*Sqrt[d - c^2*d*x^2]) - (g*(1 - c^2*x^2)*(a + b*ArcSin[c*x])^2)/(c^2
*Sqrt[d - c^2*d*x^2]) + (f*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^3)/(3*b*c*Sqrt[d - c^2*d*x^2])

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 4619

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSin[c*x])^n, x] - Dist[b*c*n, Int[
(x*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4763

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g},
 x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && (m == 1 || p > 0 ||
(n == 1 && p > -1) || (m == 2 && p < -2))

Rule 4777

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Dist[(d^IntPart[p]*(d + e*x^2)^FracPart[p])/(1 - c^2*x^2)^FracPart[p], Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a +
b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ
[p - 1/2] &&  !GtQ[d, 0]

Rubi steps

\begin {align*} \int \frac {(f+g x) \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}} \, dx &=\frac {\sqrt {1-c^2 x^2} \int \frac {(f+g x) \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=\frac {\sqrt {1-c^2 x^2} \int \left (\frac {f \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}}+\frac {g x \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}}\right ) \, dx}{\sqrt {d-c^2 d x^2}}\\ &=\frac {\left (f \sqrt {1-c^2 x^2}\right ) \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}} \, dx}{\sqrt {d-c^2 d x^2}}+\frac {\left (g \sqrt {1-c^2 x^2}\right ) \int \frac {x \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {g \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 \sqrt {d-c^2 d x^2}}+\frac {f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c \sqrt {d-c^2 d x^2}}+\frac {\left (2 b g \sqrt {1-c^2 x^2}\right ) \int \left (a+b \sin ^{-1}(c x)\right ) \, dx}{c \sqrt {d-c^2 d x^2}}\\ &=\frac {2 a b g x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}-\frac {g \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 \sqrt {d-c^2 d x^2}}+\frac {f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c \sqrt {d-c^2 d x^2}}+\frac {\left (2 b^2 g \sqrt {1-c^2 x^2}\right ) \int \sin ^{-1}(c x) \, dx}{c \sqrt {d-c^2 d x^2}}\\ &=\frac {2 a b g x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}+\frac {2 b^2 g x \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{c \sqrt {d-c^2 d x^2}}-\frac {g \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 \sqrt {d-c^2 d x^2}}+\frac {f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c \sqrt {d-c^2 d x^2}}-\frac {\left (2 b^2 g \sqrt {1-c^2 x^2}\right ) \int \frac {x}{\sqrt {1-c^2 x^2}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=\frac {2 a b g x \sqrt {1-c^2 x^2}}{c \sqrt {d-c^2 d x^2}}+\frac {2 b^2 g \left (1-c^2 x^2\right )}{c^2 \sqrt {d-c^2 d x^2}}+\frac {2 b^2 g x \sqrt {1-c^2 x^2} \sin ^{-1}(c x)}{c \sqrt {d-c^2 d x^2}}-\frac {g \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{c^2 \sqrt {d-c^2 d x^2}}+\frac {f \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.60, size = 291, normalized size = 1.70 \[ \frac {3 \sqrt {d} g \left (c^2 x^2-1\right ) \left (a^2 \sqrt {1-c^2 x^2}-2 a b c x-2 b^2 \sqrt {1-c^2 x^2}\right )-3 a^2 c f \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2} \tan ^{-1}\left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (c^2 x^2-1\right )}\right )+3 b \sqrt {d} \left (c^2 x^2-1\right ) \sin ^{-1}(c x)^2 \left (b g \sqrt {1-c^2 x^2}-a c f\right )-6 b \sqrt {d} g \left (c^2 x^2-1\right ) \sin ^{-1}(c x) \left (b c x-a \sqrt {1-c^2 x^2}\right )-b^2 c \sqrt {d} f \left (c^2 x^2-1\right ) \sin ^{-1}(c x)^3}{3 c^2 \sqrt {d} \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((f + g*x)*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(3*Sqrt[d]*g*(-1 + c^2*x^2)*(-2*a*b*c*x + a^2*Sqrt[1 - c^2*x^2] - 2*b^2*Sqrt[1 - c^2*x^2]) - 6*b*Sqrt[d]*g*(-1
 + c^2*x^2)*(b*c*x - a*Sqrt[1 - c^2*x^2])*ArcSin[c*x] + 3*b*Sqrt[d]*(-1 + c^2*x^2)*(-(a*c*f) + b*g*Sqrt[1 - c^
2*x^2])*ArcSin[c*x]^2 - b^2*c*Sqrt[d]*f*(-1 + c^2*x^2)*ArcSin[c*x]^3 - 3*a^2*c*f*Sqrt[1 - c^2*x^2]*Sqrt[d - c^
2*d*x^2]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 + c^2*x^2))])/(3*c^2*Sqrt[d]*Sqrt[1 - c^2*x^2]*Sqrt[d -
 c^2*d*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.54, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-c^{2} d x^{2} + d} {\left (a^{2} g x + a^{2} f + {\left (b^{2} g x + b^{2} f\right )} \arcsin \left (c x\right )^{2} + 2 \, {\left (a b g x + a b f\right )} \arcsin \left (c x\right )\right )}}{c^{2} d x^{2} - d}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(a^2*g*x + a^2*f + (b^2*g*x + b^2*f)*arcsin(c*x)^2 + 2*(a*b*g*x + a*b*f)*arcsin
(c*x))/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (g x + f\right )} {\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{\sqrt {-c^{2} d x^{2} + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((g*x + f)*(b*arcsin(c*x) + a)^2/sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

maple [B]  time = 0.67, size = 513, normalized size = 3.00 \[ -\frac {a^{2} g \sqrt {-c^{2} d \,x^{2}+d}}{c^{2} d}+\frac {a^{2} f \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{\sqrt {c^{2} d}}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{3} f}{3 c d \left (c^{2} x^{2}-1\right )}-\frac {2 b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right ) x}{c d \left (c^{2} x^{2}-1\right )}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \arcsin \left (c x \right )^{2} x^{2}}{d \left (c^{2} x^{2}-1\right )}+\frac {2 b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \,x^{2}}{d \left (c^{2} x^{2}-1\right )}+\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \arcsin \left (c x \right )^{2}}{c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {2 b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g}{c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2} f}{c d \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \sqrt {-c^{2} x^{2}+1}\, x}{c d \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \arcsin \left (c x \right ) x^{2}}{d \left (c^{2} x^{2}-1\right )}+\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \arcsin \left (c x \right )}{c^{2} d \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x)

[Out]

-a^2*g/c^2/d*(-c^2*d*x^2+d)^(1/2)+a^2*f/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))-1/3*b^2*(-d
*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/d/(c^2*x^2-1)*arcsin(c*x)^3*f-2*b^2*(-d*(c^2*x^2-1))^(1/2)*g/c/d/(c^2
*x^2-1)*(-c^2*x^2+1)^(1/2)*arcsin(c*x)*x-b^2*(-d*(c^2*x^2-1))^(1/2)*g/d/(c^2*x^2-1)*arcsin(c*x)^2*x^2+2*b^2*(-
d*(c^2*x^2-1))^(1/2)*g/d/(c^2*x^2-1)*x^2+b^2*(-d*(c^2*x^2-1))^(1/2)*g/c^2/d/(c^2*x^2-1)*arcsin(c*x)^2-2*b^2*(-
d*(c^2*x^2-1))^(1/2)*g/c^2/d/(c^2*x^2-1)-a*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/d/(c^2*x^2-1)*arcsin(
c*x)^2*f-2*a*b*(-d*(c^2*x^2-1))^(1/2)*g/c/d/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)*x-2*a*b*(-d*(c^2*x^2-1))^(1/2)*g/d/
(c^2*x^2-1)*arcsin(c*x)*x^2+2*a*b*(-d*(c^2*x^2-1))^(1/2)*g/c^2/d/(c^2*x^2-1)*arcsin(c*x)

________________________________________________________________________________________

maxima [A]  time = 0.47, size = 184, normalized size = 1.08 \[ \frac {b^{2} f \arcsin \left (c x\right )^{3}}{3 \, c \sqrt {d}} + 2 \, b^{2} g {\left (\frac {x \arcsin \left (c x\right )}{c \sqrt {d}} + \frac {\sqrt {-c^{2} x^{2} + 1}}{c^{2} \sqrt {d}}\right )} + \frac {a b f \arcsin \left (c x\right )^{2}}{c \sqrt {d}} + \frac {2 \, a b g x}{c \sqrt {d}} + \frac {a^{2} f \arcsin \left (c x\right )}{c \sqrt {d}} - \frac {\sqrt {-c^{2} d x^{2} + d} b^{2} g \arcsin \left (c x\right )^{2}}{c^{2} d} - \frac {2 \, \sqrt {-c^{2} d x^{2} + d} a b g \arcsin \left (c x\right )}{c^{2} d} - \frac {\sqrt {-c^{2} d x^{2} + d} a^{2} g}{c^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

1/3*b^2*f*arcsin(c*x)^3/(c*sqrt(d)) + 2*b^2*g*(x*arcsin(c*x)/(c*sqrt(d)) + sqrt(-c^2*x^2 + 1)/(c^2*sqrt(d))) +
 a*b*f*arcsin(c*x)^2/(c*sqrt(d)) + 2*a*b*g*x/(c*sqrt(d)) + a^2*f*arcsin(c*x)/(c*sqrt(d)) - sqrt(-c^2*d*x^2 + d
)*b^2*g*arcsin(c*x)^2/(c^2*d) - 2*sqrt(-c^2*d*x^2 + d)*a*b*g*arcsin(c*x)/(c^2*d) - sqrt(-c^2*d*x^2 + d)*a^2*g/
(c^2*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (f+g\,x\right )\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{\sqrt {d-c^2\,d\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2),x)

[Out]

int(((f + g*x)*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Exception raised: TypeError

________________________________________________________________________________________