3.49 \(\int \frac {(f+g x)^3 (a+b \sin ^{-1}(c x))}{(d-c^2 d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=315 \[ \frac {\left (c^2 f x \left (c^2 f^2+3 g^2\right )+g \left (3 c^2 f^2+g^2\right )\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {g^3 \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {3 f g^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c^3 d \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {1-c^2 x^2} (c f-g)^3 \log (c x+1)}{2 c^4 d \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {1-c^2 x^2} (c f+g)^3 \log (1-c x)}{2 c^4 d \sqrt {d-c^2 d x^2}}-\frac {b g^3 x \sqrt {1-c^2 x^2}}{c^3 d \sqrt {d-c^2 d x^2}} \]

[Out]

(g*(3*c^2*f^2+g^2)+c^2*f*(c^2*f^2+3*g^2)*x)*(a+b*arcsin(c*x))/c^4/d/(-c^2*d*x^2+d)^(1/2)+g^3*(-c^2*x^2+1)*(a+b
*arcsin(c*x))/c^4/d/(-c^2*d*x^2+d)^(1/2)-b*g^3*x*(-c^2*x^2+1)^(1/2)/c^3/d/(-c^2*d*x^2+d)^(1/2)-3/2*f*g^2*(a+b*
arcsin(c*x))^2*(-c^2*x^2+1)^(1/2)/b/c^3/d/(-c^2*d*x^2+d)^(1/2)+1/2*b*(c*f+g)^3*ln(-c*x+1)*(-c^2*x^2+1)^(1/2)/c
^4/d/(-c^2*d*x^2+d)^(1/2)+1/2*b*(c*f-g)^3*ln(c*x+1)*(-c^2*x^2+1)^(1/2)/c^4/d/(-c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.56, antiderivative size = 315, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {4777, 4775, 637, 4761, 12, 633, 31, 4641, 4677, 8} \[ \frac {\left (c^2 f x \left (c^2 f^2+3 g^2\right )+g \left (3 c^2 f^2+g^2\right )\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {3 f g^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c^3 d \sqrt {d-c^2 d x^2}}+\frac {g^3 \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {1-c^2 x^2} (c f-g)^3 \log (c x+1)}{2 c^4 d \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {1-c^2 x^2} (c f+g)^3 \log (1-c x)}{2 c^4 d \sqrt {d-c^2 d x^2}}-\frac {b g^3 x \sqrt {1-c^2 x^2}}{c^3 d \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((f + g*x)^3*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

-((b*g^3*x*Sqrt[1 - c^2*x^2])/(c^3*d*Sqrt[d - c^2*d*x^2])) + ((g*(3*c^2*f^2 + g^2) + c^2*f*(c^2*f^2 + 3*g^2)*x
)*(a + b*ArcSin[c*x]))/(c^4*d*Sqrt[d - c^2*d*x^2]) + (g^3*(1 - c^2*x^2)*(a + b*ArcSin[c*x]))/(c^4*d*Sqrt[d - c
^2*d*x^2]) - (3*f*g^2*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/(2*b*c^3*d*Sqrt[d - c^2*d*x^2]) + (b*(c*f + g)^
3*Sqrt[1 - c^2*x^2]*Log[1 - c*x])/(2*c^4*d*Sqrt[d - c^2*d*x^2]) + (b*(c*f - g)^3*Sqrt[1 - c^2*x^2]*Log[1 + c*x
])/(2*c^4*d*Sqrt[d - c^2*d*x^2])

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 633

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> With[{q = Rt[-(a*c), 2]}, Dist[e/2 + (c*d)/(2*q),
Int[1/(-q + c*x), x], x] + Dist[e/2 - (c*d)/(2*q), Int[1/(q + c*x), x], x]] /; FreeQ[{a, c, d, e}, x] && NiceS
qrtQ[-(a*c)]

Rule 637

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-(a*e) + c*d*x)/(a*c*Sqrt[a + c*x^2]),
 x] /; FreeQ[{a, c, d, e}, x]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4761

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With
[{u = IntHide[(f + g*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSin[c*x], u, x] - Dist[b*c, Int[Dist[1/Sqrt[1 - c^
2*x^2], u, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[p + 1/2,
0] && GtQ[d, 0] && (LtQ[m, -2*p - 1] || GtQ[m, 3])

Rule 4775

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n/Sqrt[d + e*x^2], (f + g*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; Free
Q[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && ILtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0]

Rule 4777

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Dist[(d^IntPart[p]*(d + e*x^2)^FracPart[p])/(1 - c^2*x^2)^FracPart[p], Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a +
b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ
[p - 1/2] &&  !GtQ[d, 0]

Rubi steps

\begin {align*} \int \frac {(f+g x)^3 \left (a+b \sin ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^{3/2}} \, dx &=\frac {\sqrt {1-c^2 x^2} \int \frac {(f+g x)^3 \left (a+b \sin ^{-1}(c x)\right )}{\left (1-c^2 x^2\right )^{3/2}} \, dx}{d \sqrt {d-c^2 d x^2}}\\ &=\frac {\sqrt {1-c^2 x^2} \int \left (\frac {\left (c^2 f^3+3 f g^2+g \left (3 c^2 f^2+g^2\right ) x\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^2 \left (1-c^2 x^2\right )^{3/2}}-\frac {3 f g^2 \left (a+b \sin ^{-1}(c x)\right )}{c^2 \sqrt {1-c^2 x^2}}-\frac {g^3 x \left (a+b \sin ^{-1}(c x)\right )}{c^2 \sqrt {1-c^2 x^2}}\right ) \, dx}{d \sqrt {d-c^2 d x^2}}\\ &=\frac {\sqrt {1-c^2 x^2} \int \frac {\left (c^2 f^3+3 f g^2+g \left (3 c^2 f^2+g^2\right ) x\right ) \left (a+b \sin ^{-1}(c x)\right )}{\left (1-c^2 x^2\right )^{3/2}} \, dx}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (3 f g^2 \sqrt {1-c^2 x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {1-c^2 x^2}} \, dx}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (g^3 \sqrt {1-c^2 x^2}\right ) \int \frac {x \left (a+b \sin ^{-1}(c x)\right )}{\sqrt {1-c^2 x^2}} \, dx}{c^2 d \sqrt {d-c^2 d x^2}}\\ &=\frac {\left (g \left (3 c^2 f^2+g^2\right )+c^2 f \left (c^2 f^2+3 g^2\right ) x\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {g^3 \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {3 f g^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c^3 d \sqrt {d-c^2 d x^2}}-\frac {\left (b \sqrt {1-c^2 x^2}\right ) \int \frac {g \left (3 c^2 f^2+g^2\right )+c^2 f \left (c^2 f^2+3 g^2\right ) x}{c^2 \left (1-c^2 x^2\right )} \, dx}{c d \sqrt {d-c^2 d x^2}}-\frac {\left (b g^3 \sqrt {1-c^2 x^2}\right ) \int 1 \, dx}{c^3 d \sqrt {d-c^2 d x^2}}\\ &=-\frac {b g^3 x \sqrt {1-c^2 x^2}}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {\left (g \left (3 c^2 f^2+g^2\right )+c^2 f \left (c^2 f^2+3 g^2\right ) x\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {g^3 \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {3 f g^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c^3 d \sqrt {d-c^2 d x^2}}-\frac {\left (b \sqrt {1-c^2 x^2}\right ) \int \frac {g \left (3 c^2 f^2+g^2\right )+c^2 f \left (c^2 f^2+3 g^2\right ) x}{1-c^2 x^2} \, dx}{c^3 d \sqrt {d-c^2 d x^2}}\\ &=-\frac {b g^3 x \sqrt {1-c^2 x^2}}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {\left (g \left (3 c^2 f^2+g^2\right )+c^2 f \left (c^2 f^2+3 g^2\right ) x\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {g^3 \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {3 f g^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c^3 d \sqrt {d-c^2 d x^2}}-\frac {\left (b (c f-g)^3 \sqrt {1-c^2 x^2}\right ) \int \frac {1}{-c-c^2 x} \, dx}{2 c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (b (c f+g)^3 \sqrt {1-c^2 x^2}\right ) \int \frac {1}{c-c^2 x} \, dx}{2 c^2 d \sqrt {d-c^2 d x^2}}\\ &=-\frac {b g^3 x \sqrt {1-c^2 x^2}}{c^3 d \sqrt {d-c^2 d x^2}}+\frac {\left (g \left (3 c^2 f^2+g^2\right )+c^2 f \left (c^2 f^2+3 g^2\right ) x\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}+\frac {g^3 \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^4 d \sqrt {d-c^2 d x^2}}-\frac {3 f g^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c^3 d \sqrt {d-c^2 d x^2}}+\frac {b (c f+g)^3 \sqrt {1-c^2 x^2} \log (1-c x)}{2 c^4 d \sqrt {d-c^2 d x^2}}+\frac {b (c f-g)^3 \sqrt {1-c^2 x^2} \log (1+c x)}{2 c^4 d \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.10, size = 194, normalized size = 0.62 \[ \frac {\sqrt {1-c^2 x^2} \left (2 g^3 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {3 c f g^2 \left (a+b \sin ^{-1}(c x)\right )^2}{b}+(c f-g)^3 \left (2 b \log \left (\sin \left (\frac {1}{4} \left (2 \sin ^{-1}(c x)+\pi \right )\right )\right )-\cot \left (\frac {1}{4} \left (2 \sin ^{-1}(c x)+\pi \right )\right ) \left (a+b \sin ^{-1}(c x)\right )\right )+(c f+g)^3 \left (\tan \left (\frac {1}{4} \left (2 \sin ^{-1}(c x)+\pi \right )\right ) \left (a+b \sin ^{-1}(c x)\right )+2 b \log \left (\cos \left (\frac {1}{4} \left (2 \sin ^{-1}(c x)+\pi \right )\right )\right )\right )-2 b c g^3 x\right )}{2 c^4 d \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((f + g*x)^3*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(Sqrt[1 - c^2*x^2]*(-2*b*c*g^3*x + 2*g^3*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]) - (3*c*f*g^2*(a + b*ArcSin[c*x]
)^2)/b + (c*f - g)^3*(-((a + b*ArcSin[c*x])*Cot[(Pi + 2*ArcSin[c*x])/4]) + 2*b*Log[Sin[(Pi + 2*ArcSin[c*x])/4]
]) + (c*f + g)^3*(2*b*Log[Cos[(Pi + 2*ArcSin[c*x])/4]] + (a + b*ArcSin[c*x])*Tan[(Pi + 2*ArcSin[c*x])/4])))/(2
*c^4*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.70, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (a g^{3} x^{3} + 3 \, a f g^{2} x^{2} + 3 \, a f^{2} g x + a f^{3} + {\left (b g^{3} x^{3} + 3 \, b f g^{2} x^{2} + 3 \, b f^{2} g x + b f^{3}\right )} \arcsin \left (c x\right )\right )} \sqrt {-c^{2} d x^{2} + d}}{c^{4} d^{2} x^{4} - 2 \, c^{2} d^{2} x^{2} + d^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^3*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral((a*g^3*x^3 + 3*a*f*g^2*x^2 + 3*a*f^2*g*x + a*f^3 + (b*g^3*x^3 + 3*b*f*g^2*x^2 + 3*b*f^2*g*x + b*f^3)*
arcsin(c*x))*sqrt(-c^2*d*x^2 + d)/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^3*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(t_nostep^4-1)]index.cc index_m i_lex_is_greater Error: Bad Argument Value

________________________________________________________________________________________

maple [C]  time = 1.20, size = 1158, normalized size = 3.68 \[ -\frac {a \,g^{3} x^{2}}{c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}+\frac {2 a \,g^{3}}{d \,c^{4} \sqrt {-c^{2} d \,x^{2}+d}}+\frac {3 a f \,g^{2} x}{c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}-\frac {3 a f \,g^{2} \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{c^{2} d \sqrt {c^{2} d}}+\frac {3 a \,f^{2} g}{c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}+\frac {a \,f^{3} x}{d \sqrt {-c^{2} d \,x^{2}+d}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x \,f^{3}}{d^{2} \left (c^{2} x^{2}-1\right )}-\frac {3 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) f^{2} g}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right ) f^{3}}{c \,d^{2} \left (c^{2} x^{2}-1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right ) g^{3}}{c^{4} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-i\right ) f^{3}}{c \,d^{2} \left (c^{2} x^{2}-1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-i\right ) g^{3}}{c^{4} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g^{3} \arcsin \left (c x \right )}{c^{4} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {3 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right ) f^{2} g}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {3 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right ) f \,g^{2}}{c^{3} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {3 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-i\right ) f^{2} g}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {3 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-i\right ) f \,g^{2}}{c^{3} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g^{3} \sqrt {-c^{2} x^{2}+1}\, x}{c^{3} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {i b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, f^{3} \arcsin \left (c x \right )}{c \,d^{2} \left (c^{2} x^{2}-1\right )}-\frac {3 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x f \,g^{2}}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g^{3} \arcsin \left (c x \right ) x^{2}}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {3 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2} f \,g^{2}}{2 c^{3} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {3 i b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, f \arcsin \left (c x \right ) g^{2}}{c^{3} d^{2} \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)^3*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x)

[Out]

-a*g^3*x^2/c^2/d/(-c^2*d*x^2+d)^(1/2)+2*a*g^3/d/c^4/(-c^2*d*x^2+d)^(1/2)+3*a*f*g^2*x/c^2/d/(-c^2*d*x^2+d)^(1/2
)-3*a*f*g^2/c^2/d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+3*a*f^2*g/c^2/d/(-c^2*d*x^2+d)^(1
/2)+a*f^3/d*x/(-c^2*d*x^2+d)^(1/2)-b*(-d*(c^2*x^2-1))^(1/2)/d^2/(c^2*x^2-1)*arcsin(c*x)*x*f^3-3*b*(-d*(c^2*x^2
-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arcsin(c*x)*f^2*g-b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)*ln(I*c*x+(-c^2*x^
2+1)^(1/2)+I)/c/d^2/(c^2*x^2-1)*f^3+b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)*ln(I*c*x+(-c^2*x^2+1)^(1/2)+I)
/c^4/d^2/(c^2*x^2-1)*g^3-b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/d^2/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(
1/2)-I)*f^3-b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^4/d^2/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)-I)*g^3
-2*b*(-d*(c^2*x^2-1))^(1/2)*g^3/c^4/d^2/(c^2*x^2-1)*arcsin(c*x)+3*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)*
ln(I*c*x+(-c^2*x^2+1)^(1/2)+I)/c^2/d^2/(c^2*x^2-1)*f^2*g-3*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)*ln(I*c*
x+(-c^2*x^2+1)^(1/2)+I)/c^3/d^2/(c^2*x^2-1)*f*g^2-3*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^2/d^2/(c^2*x
^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)-I)*f^2*g-3*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/d^2/(c^2*x^2-1)*l
n(I*c*x+(-c^2*x^2+1)^(1/2)-I)*f*g^2+b*(-d*(c^2*x^2-1))^(1/2)*g^3/c^3/d^2/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)*x+I*b*
(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c/d^2/(c^2*x^2-1)*f^3*arcsin(c*x)-3*b*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2
/(c^2*x^2-1)*arcsin(c*x)*x*f*g^2+b*(-d*(c^2*x^2-1))^(1/2)*g^3/c^2/d^2/(c^2*x^2-1)*arcsin(c*x)*x^2+3/2*b*(-d*(c
^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/d^2/(c^2*x^2-1)*arcsin(c*x)^2*f*g^2+3*I*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*
x^2-1))^(1/2)/c^3/d^2/(c^2*x^2-1)*f*arcsin(c*x)*g^2

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^3*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (f+g\,x\right )}^3\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{{\left (d-c^2\,d\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)^3*(a + b*asin(c*x)))/(d - c^2*d*x^2)^(3/2),x)

[Out]

int(((f + g*x)^3*(a + b*asin(c*x)))/(d - c^2*d*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)**3*(a+b*asin(c*x))/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Exception raised: TypeError

________________________________________________________________________________________