3.350 \(\int \frac {a+b \sin ^{-1}(c x^2)}{x^{11}} \, dx\)

Optimal. Leaf size=89 \[ -\frac {a+b \sin ^{-1}\left (c x^2\right )}{10 x^{10}}-\frac {b c \sqrt {1-c^2 x^4}}{40 x^8}-\frac {3}{80} b c^5 \tanh ^{-1}\left (\sqrt {1-c^2 x^4}\right )-\frac {3 b c^3 \sqrt {1-c^2 x^4}}{80 x^4} \]

[Out]

1/10*(-a-b*arcsin(c*x^2))/x^10-3/80*b*c^5*arctanh((-c^2*x^4+1)^(1/2))-1/40*b*c*(-c^2*x^4+1)^(1/2)/x^8-3/80*b*c
^3*(-c^2*x^4+1)^(1/2)/x^4

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {4842, 12, 266, 51, 63, 208} \[ -\frac {a+b \sin ^{-1}\left (c x^2\right )}{10 x^{10}}-\frac {3 b c^3 \sqrt {1-c^2 x^4}}{80 x^4}-\frac {b c \sqrt {1-c^2 x^4}}{40 x^8}-\frac {3}{80} b c^5 \tanh ^{-1}\left (\sqrt {1-c^2 x^4}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x^2])/x^11,x]

[Out]

-(b*c*Sqrt[1 - c^2*x^4])/(40*x^8) - (3*b*c^3*Sqrt[1 - c^2*x^4])/(80*x^4) - (a + b*ArcSin[c*x^2])/(10*x^10) - (
3*b*c^5*ArcTanh[Sqrt[1 - c^2*x^4]])/80

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 4842

Int[((a_.) + ArcSin[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m + 1)*(a + b*ArcSin[
u]))/(d*(m + 1)), x] - Dist[b/(d*(m + 1)), Int[SimplifyIntegrand[((c + d*x)^(m + 1)*D[u, x])/Sqrt[1 - u^2], x]
, x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] &&  !FunctionOfQ[(c + d*x)^(
m + 1), u, x] &&  !FunctionOfExponentialQ[u, x]

Rubi steps

\begin {align*} \int \frac {a+b \sin ^{-1}\left (c x^2\right )}{x^{11}} \, dx &=-\frac {a+b \sin ^{-1}\left (c x^2\right )}{10 x^{10}}+\frac {1}{10} b \int \frac {2 c}{x^9 \sqrt {1-c^2 x^4}} \, dx\\ &=-\frac {a+b \sin ^{-1}\left (c x^2\right )}{10 x^{10}}+\frac {1}{5} (b c) \int \frac {1}{x^9 \sqrt {1-c^2 x^4}} \, dx\\ &=-\frac {a+b \sin ^{-1}\left (c x^2\right )}{10 x^{10}}+\frac {1}{20} (b c) \operatorname {Subst}\left (\int \frac {1}{x^3 \sqrt {1-c^2 x}} \, dx,x,x^4\right )\\ &=-\frac {b c \sqrt {1-c^2 x^4}}{40 x^8}-\frac {a+b \sin ^{-1}\left (c x^2\right )}{10 x^{10}}+\frac {1}{80} \left (3 b c^3\right ) \operatorname {Subst}\left (\int \frac {1}{x^2 \sqrt {1-c^2 x}} \, dx,x,x^4\right )\\ &=-\frac {b c \sqrt {1-c^2 x^4}}{40 x^8}-\frac {3 b c^3 \sqrt {1-c^2 x^4}}{80 x^4}-\frac {a+b \sin ^{-1}\left (c x^2\right )}{10 x^{10}}+\frac {1}{160} \left (3 b c^5\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-c^2 x}} \, dx,x,x^4\right )\\ &=-\frac {b c \sqrt {1-c^2 x^4}}{40 x^8}-\frac {3 b c^3 \sqrt {1-c^2 x^4}}{80 x^4}-\frac {a+b \sin ^{-1}\left (c x^2\right )}{10 x^{10}}-\frac {1}{80} \left (3 b c^3\right ) \operatorname {Subst}\left (\int \frac {1}{\frac {1}{c^2}-\frac {x^2}{c^2}} \, dx,x,\sqrt {1-c^2 x^4}\right )\\ &=-\frac {b c \sqrt {1-c^2 x^4}}{40 x^8}-\frac {3 b c^3 \sqrt {1-c^2 x^4}}{80 x^4}-\frac {a+b \sin ^{-1}\left (c x^2\right )}{10 x^{10}}-\frac {3}{80} b c^5 \tanh ^{-1}\left (\sqrt {1-c^2 x^4}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 63, normalized size = 0.71 \[ -\frac {a}{10 x^{10}}-\frac {1}{10} b c^5 \sqrt {1-c^2 x^4} \, _2F_1\left (\frac {1}{2},3;\frac {3}{2};1-c^2 x^4\right )-\frac {b \sin ^{-1}\left (c x^2\right )}{10 x^{10}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c*x^2])/x^11,x]

[Out]

-1/10*a/x^10 - (b*ArcSin[c*x^2])/(10*x^10) - (b*c^5*Sqrt[1 - c^2*x^4]*Hypergeometric2F1[1/2, 3, 3/2, 1 - c^2*x
^4])/10

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 97, normalized size = 1.09 \[ -\frac {3 \, b c^{5} x^{10} \log \left (\sqrt {-c^{2} x^{4} + 1} + 1\right ) - 3 \, b c^{5} x^{10} \log \left (\sqrt {-c^{2} x^{4} + 1} - 1\right ) + 16 \, b \arcsin \left (c x^{2}\right ) + 2 \, {\left (3 \, b c^{3} x^{6} + 2 \, b c x^{2}\right )} \sqrt {-c^{2} x^{4} + 1} + 16 \, a}{160 \, x^{10}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x^2))/x^11,x, algorithm="fricas")

[Out]

-1/160*(3*b*c^5*x^10*log(sqrt(-c^2*x^4 + 1) + 1) - 3*b*c^5*x^10*log(sqrt(-c^2*x^4 + 1) - 1) + 16*b*arcsin(c*x^
2) + 2*(3*b*c^3*x^6 + 2*b*c*x^2)*sqrt(-c^2*x^4 + 1) + 16*a)/x^10

________________________________________________________________________________________

giac [B]  time = 1.55, size = 467, normalized size = 5.25 \[ -\frac {\frac {2 \, b c^{11} x^{10} \arcsin \left (c x^{2}\right )}{{\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}^{5}} + \frac {2 \, a c^{11} x^{10}}{{\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}^{5}} - \frac {b c^{10} x^{8}}{{\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}^{4}} + \frac {10 \, b c^{9} x^{6} \arcsin \left (c x^{2}\right )}{{\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}^{3}} + \frac {10 \, a c^{9} x^{6}}{{\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}^{3}} - \frac {8 \, b c^{8} x^{4}}{{\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}^{2}} + \frac {20 \, b c^{7} x^{2} \arcsin \left (c x^{2}\right )}{\sqrt {-c^{2} x^{4} + 1} + 1} + \frac {20 \, a c^{7} x^{2}}{\sqrt {-c^{2} x^{4} + 1} + 1} - 24 \, b c^{6} \log \left (x^{2} {\left | c \right |}\right ) + 24 \, b c^{6} \log \left (\sqrt {-c^{2} x^{4} + 1} + 1\right ) + \frac {20 \, b c^{5} {\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )} \arcsin \left (c x^{2}\right )}{x^{2}} + \frac {20 \, a c^{5} {\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}}{x^{2}} + \frac {8 \, b c^{4} {\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}^{2}}{x^{4}} + \frac {10 \, b c^{3} {\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}^{3} \arcsin \left (c x^{2}\right )}{x^{6}} + \frac {10 \, a c^{3} {\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}^{3}}{x^{6}} + \frac {b c^{2} {\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}^{4}}{x^{8}} + \frac {2 \, b c {\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}^{5} \arcsin \left (c x^{2}\right )}{x^{10}} + \frac {2 \, a c {\left (\sqrt {-c^{2} x^{4} + 1} + 1\right )}^{5}}{x^{10}}}{640 \, c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x^2))/x^11,x, algorithm="giac")

[Out]

-1/640*(2*b*c^11*x^10*arcsin(c*x^2)/(sqrt(-c^2*x^4 + 1) + 1)^5 + 2*a*c^11*x^10/(sqrt(-c^2*x^4 + 1) + 1)^5 - b*
c^10*x^8/(sqrt(-c^2*x^4 + 1) + 1)^4 + 10*b*c^9*x^6*arcsin(c*x^2)/(sqrt(-c^2*x^4 + 1) + 1)^3 + 10*a*c^9*x^6/(sq
rt(-c^2*x^4 + 1) + 1)^3 - 8*b*c^8*x^4/(sqrt(-c^2*x^4 + 1) + 1)^2 + 20*b*c^7*x^2*arcsin(c*x^2)/(sqrt(-c^2*x^4 +
 1) + 1) + 20*a*c^7*x^2/(sqrt(-c^2*x^4 + 1) + 1) - 24*b*c^6*log(x^2*abs(c)) + 24*b*c^6*log(sqrt(-c^2*x^4 + 1)
+ 1) + 20*b*c^5*(sqrt(-c^2*x^4 + 1) + 1)*arcsin(c*x^2)/x^2 + 20*a*c^5*(sqrt(-c^2*x^4 + 1) + 1)/x^2 + 8*b*c^4*(
sqrt(-c^2*x^4 + 1) + 1)^2/x^4 + 10*b*c^3*(sqrt(-c^2*x^4 + 1) + 1)^3*arcsin(c*x^2)/x^6 + 10*a*c^3*(sqrt(-c^2*x^
4 + 1) + 1)^3/x^6 + b*c^2*(sqrt(-c^2*x^4 + 1) + 1)^4/x^8 + 2*b*c*(sqrt(-c^2*x^4 + 1) + 1)^5*arcsin(c*x^2)/x^10
 + 2*a*c*(sqrt(-c^2*x^4 + 1) + 1)^5/x^10)/c

________________________________________________________________________________________

maple [A]  time = 0.02, size = 84, normalized size = 0.94 \[ -\frac {a}{10 x^{10}}+b \left (-\frac {\arcsin \left (c \,x^{2}\right )}{10 x^{10}}+\frac {c \left (-\frac {\sqrt {-c^{2} x^{4}+1}}{8 x^{8}}+\frac {3 c^{2} \left (-\frac {\sqrt {-c^{2} x^{4}+1}}{2 x^{4}}-\frac {c^{2} \arctanh \left (\frac {1}{\sqrt {-c^{2} x^{4}+1}}\right )}{2}\right )}{8}\right )}{5}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(c*x^2))/x^11,x)

[Out]

-1/10*a/x^10+b*(-1/10/x^10*arcsin(c*x^2)+1/5*c*(-1/8/x^8*(-c^2*x^4+1)^(1/2)+3/8*c^2*(-1/2/x^4*(-c^2*x^4+1)^(1/
2)-1/2*c^2*arctanh(1/(-c^2*x^4+1)^(1/2)))))

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 125, normalized size = 1.40 \[ -\frac {1}{160} \, {\left ({\left (3 \, c^{4} \log \left (\sqrt {-c^{2} x^{4} + 1} + 1\right ) - 3 \, c^{4} \log \left (\sqrt {-c^{2} x^{4} + 1} - 1\right ) - \frac {2 \, {\left (3 \, {\left (-c^{2} x^{4} + 1\right )}^{\frac {3}{2}} c^{4} - 5 \, \sqrt {-c^{2} x^{4} + 1} c^{4}\right )}}{2 \, c^{2} x^{4} + {\left (c^{2} x^{4} - 1\right )}^{2} - 1}\right )} c + \frac {16 \, \arcsin \left (c x^{2}\right )}{x^{10}}\right )} b - \frac {a}{10 \, x^{10}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x^2))/x^11,x, algorithm="maxima")

[Out]

-1/160*((3*c^4*log(sqrt(-c^2*x^4 + 1) + 1) - 3*c^4*log(sqrt(-c^2*x^4 + 1) - 1) - 2*(3*(-c^2*x^4 + 1)^(3/2)*c^4
 - 5*sqrt(-c^2*x^4 + 1)*c^4)/(2*c^2*x^4 + (c^2*x^4 - 1)^2 - 1))*c + 16*arcsin(c*x^2)/x^10)*b - 1/10*a/x^10

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {a+b\,\mathrm {asin}\left (c\,x^2\right )}{x^{11}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x^2))/x^11,x)

[Out]

int((a + b*asin(c*x^2))/x^11, x)

________________________________________________________________________________________

sympy [A]  time = 7.58, size = 201, normalized size = 2.26 \[ - \frac {a}{10 x^{10}} + \frac {b c \left (\begin {cases} - \frac {3 c^{4} \operatorname {acosh}{\left (\frac {1}{c x^{2}} \right )}}{16} + \frac {3 c^{3}}{16 x^{2} \sqrt {-1 + \frac {1}{c^{2} x^{4}}}} - \frac {c}{16 x^{6} \sqrt {-1 + \frac {1}{c^{2} x^{4}}}} - \frac {1}{8 c x^{10} \sqrt {-1 + \frac {1}{c^{2} x^{4}}}} & \text {for}\: \frac {1}{\left |{c^{2} x^{4}}\right |} > 1 \\\frac {3 i c^{4} \operatorname {asin}{\left (\frac {1}{c x^{2}} \right )}}{16} - \frac {3 i c^{3}}{16 x^{2} \sqrt {1 - \frac {1}{c^{2} x^{4}}}} + \frac {i c}{16 x^{6} \sqrt {1 - \frac {1}{c^{2} x^{4}}}} + \frac {i}{8 c x^{10} \sqrt {1 - \frac {1}{c^{2} x^{4}}}} & \text {otherwise} \end {cases}\right )}{5} - \frac {b \operatorname {asin}{\left (c x^{2} \right )}}{10 x^{10}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(c*x**2))/x**11,x)

[Out]

-a/(10*x**10) + b*c*Piecewise((-3*c**4*acosh(1/(c*x**2))/16 + 3*c**3/(16*x**2*sqrt(-1 + 1/(c**2*x**4))) - c/(1
6*x**6*sqrt(-1 + 1/(c**2*x**4))) - 1/(8*c*x**10*sqrt(-1 + 1/(c**2*x**4))), 1/Abs(c**2*x**4) > 1), (3*I*c**4*as
in(1/(c*x**2))/16 - 3*I*c**3/(16*x**2*sqrt(1 - 1/(c**2*x**4))) + I*c/(16*x**6*sqrt(1 - 1/(c**2*x**4))) + I/(8*
c*x**10*sqrt(1 - 1/(c**2*x**4))), True))/5 - b*asin(c*x**2)/(10*x**10)

________________________________________________________________________________________