3.277 \(\int \frac {(c e+d e x)^2}{(a+b \sin ^{-1}(c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=441 \[ -\frac {2 \sqrt {2 \pi } e^2 \sin \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}+\frac {6 \sqrt {6 \pi } e^2 \sin \left (\frac {3 a}{b}\right ) C\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{5 b^{7/2} d}+\frac {2 \sqrt {2 \pi } e^2 \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}-\frac {6 \sqrt {6 \pi } e^2 \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{5 b^{7/2} d}+\frac {24 e^2 \sqrt {1-(c+d x)^2} (c+d x)^2}{5 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {16 e^2 \sqrt {1-(c+d x)^2}}{15 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}-\frac {8 e^2 (c+d x)}{15 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}-\frac {2 e^2 \sqrt {1-(c+d x)^2} (c+d x)^2}{5 b d \left (a+b \sin ^{-1}(c+d x)\right )^{5/2}} \]

[Out]

-8/15*e^2*(d*x+c)/b^2/d/(a+b*arcsin(d*x+c))^(3/2)+4/5*e^2*(d*x+c)^3/b^2/d/(a+b*arcsin(d*x+c))^(3/2)+2/15*e^2*c
os(a/b)*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(7/2)/d-2/15*e^2*Fresn
elC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/b^(7/2)/d-6/5*e^2*cos(3*a/b)
*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*6^(1/2)*Pi^(1/2)/b^(7/2)/d+6/5*e^2*FresnelC(6^(1
/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(3*a/b)*6^(1/2)*Pi^(1/2)/b^(7/2)/d-2/5*e^2*(d*x+c)^2*(1-(d*
x+c)^2)^(1/2)/b/d/(a+b*arcsin(d*x+c))^(5/2)-16/15*e^2*(1-(d*x+c)^2)^(1/2)/b^3/d/(a+b*arcsin(d*x+c))^(1/2)+24/5
*e^2*(d*x+c)^2*(1-(d*x+c)^2)^(1/2)/b^3/d/(a+b*arcsin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.20, antiderivative size = 441, normalized size of antiderivative = 1.00, number of steps used = 24, number of rules used = 12, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {4805, 12, 4633, 4719, 4631, 3306, 3305, 3351, 3304, 3352, 4621, 4723} \[ -\frac {2 \sqrt {2 \pi } e^2 \sin \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}+\frac {6 \sqrt {6 \pi } e^2 \sin \left (\frac {3 a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{5 b^{7/2} d}+\frac {2 \sqrt {2 \pi } e^2 \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}-\frac {6 \sqrt {6 \pi } e^2 \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{5 b^{7/2} d}+\frac {4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}+\frac {24 e^2 \sqrt {1-(c+d x)^2} (c+d x)^2}{5 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {8 e^2 (c+d x)}{15 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}-\frac {16 e^2 \sqrt {1-(c+d x)^2}}{15 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {2 e^2 \sqrt {1-(c+d x)^2} (c+d x)^2}{5 b d \left (a+b \sin ^{-1}(c+d x)\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^2/(a + b*ArcSin[c + d*x])^(7/2),x]

[Out]

(-2*e^2*(c + d*x)^2*Sqrt[1 - (c + d*x)^2])/(5*b*d*(a + b*ArcSin[c + d*x])^(5/2)) - (8*e^2*(c + d*x))/(15*b^2*d
*(a + b*ArcSin[c + d*x])^(3/2)) + (4*e^2*(c + d*x)^3)/(5*b^2*d*(a + b*ArcSin[c + d*x])^(3/2)) - (16*e^2*Sqrt[1
 - (c + d*x)^2])/(15*b^3*d*Sqrt[a + b*ArcSin[c + d*x]]) + (24*e^2*(c + d*x)^2*Sqrt[1 - (c + d*x)^2])/(5*b^3*d*
Sqrt[a + b*ArcSin[c + d*x]]) + (2*e^2*Sqrt[2*Pi]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sq
rt[b]])/(15*b^(7/2)*d) - (6*e^2*Sqrt[6*Pi]*Cos[(3*a)/b]*FresnelS[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt
[b]])/(5*b^(7/2)*d) - (2*e^2*Sqrt[2*Pi]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[a/b])/(
15*b^(7/2)*d) + (6*e^2*Sqrt[6*Pi]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[(3*a)/b])/(5*
b^(7/2)*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3306

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 4621

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^(n + 1))
/(b*c*(n + 1)), x] + Dist[c/(b*(n + 1)), Int[(x*(a + b*ArcSin[c*x])^(n + 1))/Sqrt[1 - c^2*x^2], x], x] /; Free
Q[{a, b, c}, x] && LtQ[n, -1]

Rule 4631

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 - c^2*x^2]*(a + b*ArcSin
[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n + 1)
, Sin[x]^(m - 1)*(m - (m + 1)*Sin[x]^2), x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && G
eQ[n, -2] && LtQ[n, -1]

Rule 4633

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 - c^2*x^2]*(a + b*ArcSin
[c*x])^(n + 1))/(b*c*(n + 1)), x] + (Dist[(c*(m + 1))/(b*(n + 1)), Int[(x^(m + 1)*(a + b*ArcSin[c*x])^(n + 1))
/Sqrt[1 - c^2*x^2], x], x] - Dist[m/(b*c*(n + 1)), Int[(x^(m - 1)*(a + b*ArcSin[c*x])^(n + 1))/Sqrt[1 - c^2*x^
2], x], x]) /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && LtQ[n, -2]

Rule 4719

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
((f*x)^m*(a + b*ArcSin[c*x])^(n + 1))/(b*c*Sqrt[d]*(n + 1)), x] - Dist[(f*m)/(b*c*Sqrt[d]*(n + 1)), Int[(f*x)^
(m - 1)*(a + b*ArcSin[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[n,
-1] && GtQ[d, 0]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^(
m + 1), Subst[Int[(a + b*x)^n*Sin[x]^m*Cos[x]^(2*p + 1), x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n},
x] && EqQ[c^2*d + e, 0] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 4805

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \frac {(c e+d e x)^2}{\left (a+b \sin ^{-1}(c+d x)\right )^{7/2}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {e^2 x^2}{\left (a+b \sin ^{-1}(x)\right )^{7/2}} \, dx,x,c+d x\right )}{d}\\ &=\frac {e^2 \operatorname {Subst}\left (\int \frac {x^2}{\left (a+b \sin ^{-1}(x)\right )^{7/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{5 b d \left (a+b \sin ^{-1}(c+d x)\right )^{5/2}}+\frac {\left (4 e^2\right ) \operatorname {Subst}\left (\int \frac {x}{\sqrt {1-x^2} \left (a+b \sin ^{-1}(x)\right )^{5/2}} \, dx,x,c+d x\right )}{5 b d}-\frac {\left (6 e^2\right ) \operatorname {Subst}\left (\int \frac {x^3}{\sqrt {1-x^2} \left (a+b \sin ^{-1}(x)\right )^{5/2}} \, dx,x,c+d x\right )}{5 b d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{5 b d \left (a+b \sin ^{-1}(c+d x)\right )^{5/2}}-\frac {8 e^2 (c+d x)}{15 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}+\frac {4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}+\frac {\left (8 e^2\right ) \operatorname {Subst}\left (\int \frac {1}{\left (a+b \sin ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{15 b^2 d}-\frac {\left (12 e^2\right ) \operatorname {Subst}\left (\int \frac {x^2}{\left (a+b \sin ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{5 b^2 d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{5 b d \left (a+b \sin ^{-1}(c+d x)\right )^{5/2}}-\frac {8 e^2 (c+d x)}{15 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}+\frac {4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}-\frac {16 e^2 \sqrt {1-(c+d x)^2}}{15 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {24 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{5 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {\left (16 e^2\right ) \operatorname {Subst}\left (\int \frac {x}{\sqrt {1-x^2} \sqrt {a+b \sin ^{-1}(x)}} \, dx,x,c+d x\right )}{15 b^3 d}-\frac {\left (24 e^2\right ) \operatorname {Subst}\left (\int \left (-\frac {\sin (x)}{4 \sqrt {a+b x}}+\frac {3 \sin (3 x)}{4 \sqrt {a+b x}}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{5 b^3 d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{5 b d \left (a+b \sin ^{-1}(c+d x)\right )^{5/2}}-\frac {8 e^2 (c+d x)}{15 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}+\frac {4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}-\frac {16 e^2 \sqrt {1-(c+d x)^2}}{15 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {24 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{5 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {\left (16 e^2\right ) \operatorname {Subst}\left (\int \frac {\sin (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{15 b^3 d}+\frac {\left (6 e^2\right ) \operatorname {Subst}\left (\int \frac {\sin (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{5 b^3 d}-\frac {\left (18 e^2\right ) \operatorname {Subst}\left (\int \frac {\sin (3 x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{5 b^3 d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{5 b d \left (a+b \sin ^{-1}(c+d x)\right )^{5/2}}-\frac {8 e^2 (c+d x)}{15 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}+\frac {4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}-\frac {16 e^2 \sqrt {1-(c+d x)^2}}{15 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {24 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{5 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {\left (16 e^2 \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{15 b^3 d}+\frac {\left (6 e^2 \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{5 b^3 d}-\frac {\left (18 e^2 \cos \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{5 b^3 d}+\frac {\left (16 e^2 \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{15 b^3 d}-\frac {\left (6 e^2 \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{5 b^3 d}+\frac {\left (18 e^2 \sin \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{5 b^3 d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{5 b d \left (a+b \sin ^{-1}(c+d x)\right )^{5/2}}-\frac {8 e^2 (c+d x)}{15 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}+\frac {4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}-\frac {16 e^2 \sqrt {1-(c+d x)^2}}{15 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {24 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{5 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {\left (32 e^2 \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{15 b^4 d}+\frac {\left (12 e^2 \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{5 b^4 d}-\frac {\left (36 e^2 \cos \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{5 b^4 d}+\frac {\left (32 e^2 \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{15 b^4 d}-\frac {\left (12 e^2 \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{5 b^4 d}+\frac {\left (36 e^2 \sin \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{5 b^4 d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{5 b d \left (a+b \sin ^{-1}(c+d x)\right )^{5/2}}-\frac {8 e^2 (c+d x)}{15 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}+\frac {4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}-\frac {16 e^2 \sqrt {1-(c+d x)^2}}{15 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {24 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{5 b^3 d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {2 e^2 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}-\frac {6 e^2 \sqrt {6 \pi } \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{5 b^{7/2} d}-\frac {2 e^2 \sqrt {2 \pi } C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{15 b^{7/2} d}+\frac {6 e^2 \sqrt {6 \pi } C\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{5 b^{7/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.99, size = 538, normalized size = 1.22 \[ \frac {e^2 \left (e^{-i \sin ^{-1}(c+d x)} \left (4 a^2+2 a b \left (4 \sin ^{-1}(c+d x)+i\right )-4 e^{\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^2 \sqrt {\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {1}{2},\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )+b^2 \left (4 \sin ^{-1}(c+d x)^2+2 i \sin ^{-1}(c+d x)-3\right )\right )+3 e^{-3 i \sin ^{-1}(c+d x)} \left (b^2-2 \left (a+b \sin ^{-1}(c+d x)\right ) \left (6 i \sqrt {3} b e^{\frac {3 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \left (\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{3/2} \Gamma \left (\frac {1}{2},\frac {3 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )+6 a+6 b \sin ^{-1}(c+d x)+i b\right )\right )+2 e^{-\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right ) \left (e^{\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \left (2 a+2 b \sin ^{-1}(c+d x)-i b\right )-2 i b \left (-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{3/2} \Gamma \left (\frac {1}{2},-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )\right )-6 e^{-\frac {3 i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right ) \left (e^{\frac {3 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \left (6 a+6 b \sin ^{-1}(c+d x)-i b\right )-6 i \sqrt {3} b \left (-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{3/2} \Gamma \left (\frac {1}{2},-\frac {3 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )\right )-3 b^2 e^{i \sin ^{-1}(c+d x)}+3 b^2 e^{3 i \sin ^{-1}(c+d x)}\right )}{60 b^3 d \left (a+b \sin ^{-1}(c+d x)\right )^{5/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c*e + d*e*x)^2/(a + b*ArcSin[c + d*x])^(7/2),x]

[Out]

(e^2*(-3*b^2*E^(I*ArcSin[c + d*x]) + 3*b^2*E^((3*I)*ArcSin[c + d*x]) + (2*(a + b*ArcSin[c + d*x])*(E^((I*(a +
b*ArcSin[c + d*x]))/b)*(2*a - I*b + 2*b*ArcSin[c + d*x]) - (2*I)*b*(((-I)*(a + b*ArcSin[c + d*x]))/b)^(3/2)*Ga
mma[1/2, ((-I)*(a + b*ArcSin[c + d*x]))/b]))/E^((I*a)/b) + (4*a^2 + 2*a*b*(I + 4*ArcSin[c + d*x]) + b^2*(-3 +
(2*I)*ArcSin[c + d*x] + 4*ArcSin[c + d*x]^2) - 4*E^((I*(a + b*ArcSin[c + d*x]))/b)*(a + b*ArcSin[c + d*x])^2*S
qrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, (I*(a + b*ArcSin[c + d*x]))/b])/E^(I*ArcSin[c + d*x]) - (6*(a +
b*ArcSin[c + d*x])*(E^(((3*I)*(a + b*ArcSin[c + d*x]))/b)*(6*a - I*b + 6*b*ArcSin[c + d*x]) - (6*I)*Sqrt[3]*b*
(((-I)*(a + b*ArcSin[c + d*x]))/b)^(3/2)*Gamma[1/2, ((-3*I)*(a + b*ArcSin[c + d*x]))/b]))/E^(((3*I)*a)/b) + (3
*(b^2 - 2*(a + b*ArcSin[c + d*x])*(6*a + I*b + 6*b*ArcSin[c + d*x] + (6*I)*Sqrt[3]*b*E^(((3*I)*(a + b*ArcSin[c
 + d*x]))/b)*((I*(a + b*ArcSin[c + d*x]))/b)^(3/2)*Gamma[1/2, ((3*I)*(a + b*ArcSin[c + d*x]))/b])))/E^((3*I)*A
rcSin[c + d*x])))/(60*b^3*d*(a + b*ArcSin[c + d*x])^(5/2))

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d e x + c e\right )}^{2}}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^2/(b*arcsin(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

maple [B]  time = 0.39, size = 1229, normalized size = 2.79 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(7/2),x)

[Out]

1/30/d*e^2/b^3*(-36*3^(1/2)*arcsin(d*x+c)^2*2^(1/2)*Pi^(1/2)*(1/b)^(1/2)*cos(3*a/b)*FresnelS(2^(1/2)/Pi^(1/2)*
3^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*(a+b*arcsin(d*x+c))^(1/2)*b^2+36*3^(1/2)*arcsin(d*x+c)^2*2^(1
/2)*Pi^(1/2)*(1/b)^(1/2)*sin(3*a/b)*FresnelC(2^(1/2)/Pi^(1/2)*3^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)
*(a+b*arcsin(d*x+c))^(1/2)*b^2-72*3^(1/2)*arcsin(d*x+c)*2^(1/2)*Pi^(1/2)*(1/b)^(1/2)*cos(3*a/b)*FresnelS(2^(1/
2)/Pi^(1/2)*3^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*(a+b*arcsin(d*x+c))^(1/2)*a*b+72*3^(1/2)*arcsin(d
*x+c)*2^(1/2)*Pi^(1/2)*(1/b)^(1/2)*sin(3*a/b)*FresnelC(2^(1/2)/Pi^(1/2)*3^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c)
)^(1/2)/b)*(a+b*arcsin(d*x+c))^(1/2)*a*b+4*arcsin(d*x+c)^2*(a+b*arcsin(d*x+c))^(1/2)*cos(a/b)*FresnelS(2^(1/2)
/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*2^(1/2)*Pi^(1/2)*(1/b)^(1/2)*b^2-4*arcsin(d*x+c)^2*(a+b*arc
sin(d*x+c))^(1/2)*sin(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*2^(1/2)*Pi^(1/2)
*(1/b)^(1/2)*b^2-36*3^(1/2)*2^(1/2)*Pi^(1/2)*(1/b)^(1/2)*cos(3*a/b)*FresnelS(2^(1/2)/Pi^(1/2)*3^(1/2)/(1/b)^(1
/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*(a+b*arcsin(d*x+c))^(1/2)*a^2+36*3^(1/2)*2^(1/2)*Pi^(1/2)*(1/b)^(1/2)*sin(3*a
/b)*FresnelC(2^(1/2)/Pi^(1/2)*3^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*(a+b*arcsin(d*x+c))^(1/2)*a^2+8
*arcsin(d*x+c)*(a+b*arcsin(d*x+c))^(1/2)*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1
/2)/b)*2^(1/2)*Pi^(1/2)*(1/b)^(1/2)*a*b-8*arcsin(d*x+c)*(a+b*arcsin(d*x+c))^(1/2)*sin(a/b)*FresnelC(2^(1/2)/Pi
^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*2^(1/2)*Pi^(1/2)*(1/b)^(1/2)*a*b+4*(a+b*arcsin(d*x+c))^(1/2)*c
os(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*2^(1/2)*Pi^(1/2)*(1/b)^(1/2)*a^2-4*
(a+b*arcsin(d*x+c))^(1/2)*sin(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*2^(1/2)*
Pi^(1/2)*(1/b)^(1/2)*a^2+4*arcsin(d*x+c)^2*cos((a+b*arcsin(d*x+c))/b-a/b)*b^2-36*arcsin(d*x+c)^2*cos(3*(a+b*ar
csin(d*x+c))/b-3*a/b)*b^2+8*arcsin(d*x+c)*cos((a+b*arcsin(d*x+c))/b-a/b)*a*b+2*arcsin(d*x+c)*sin((a+b*arcsin(d
*x+c))/b-a/b)*b^2-72*arcsin(d*x+c)*cos(3*(a+b*arcsin(d*x+c))/b-3*a/b)*a*b-6*arcsin(d*x+c)*sin(3*(a+b*arcsin(d*
x+c))/b-3*a/b)*b^2+4*cos((a+b*arcsin(d*x+c))/b-a/b)*a^2-3*cos((a+b*arcsin(d*x+c))/b-a/b)*b^2+2*sin((a+b*arcsin
(d*x+c))/b-a/b)*a*b-36*cos(3*(a+b*arcsin(d*x+c))/b-3*a/b)*a^2+3*cos(3*(a+b*arcsin(d*x+c))/b-3*a/b)*b^2-6*sin(3
*(a+b*arcsin(d*x+c))/b-3*a/b)*a*b)/(a+b*arcsin(d*x+c))^(5/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d e x + c e\right )}^{2}}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)^2/(b*arcsin(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (c\,e+d\,e\,x\right )}^2}{{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)^2/(a + b*asin(c + d*x))^(7/2),x)

[Out]

int((c*e + d*e*x)^2/(a + b*asin(c + d*x))^(7/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ e^{2} \left (\int \frac {c^{2}}{a^{3} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + 3 a^{2} b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )} + 3 a b^{2} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}^{2}{\left (c + d x \right )} + b^{3} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}^{3}{\left (c + d x \right )}}\, dx + \int \frac {d^{2} x^{2}}{a^{3} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + 3 a^{2} b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )} + 3 a b^{2} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}^{2}{\left (c + d x \right )} + b^{3} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}^{3}{\left (c + d x \right )}}\, dx + \int \frac {2 c d x}{a^{3} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + 3 a^{2} b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )} + 3 a b^{2} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}^{2}{\left (c + d x \right )} + b^{3} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}^{3}{\left (c + d x \right )}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**2/(a+b*asin(d*x+c))**(7/2),x)

[Out]

e**2*(Integral(c**2/(a**3*sqrt(a + b*asin(c + d*x)) + 3*a**2*b*sqrt(a + b*asin(c + d*x))*asin(c + d*x) + 3*a*b
**2*sqrt(a + b*asin(c + d*x))*asin(c + d*x)**2 + b**3*sqrt(a + b*asin(c + d*x))*asin(c + d*x)**3), x) + Integr
al(d**2*x**2/(a**3*sqrt(a + b*asin(c + d*x)) + 3*a**2*b*sqrt(a + b*asin(c + d*x))*asin(c + d*x) + 3*a*b**2*sqr
t(a + b*asin(c + d*x))*asin(c + d*x)**2 + b**3*sqrt(a + b*asin(c + d*x))*asin(c + d*x)**3), x) + Integral(2*c*
d*x/(a**3*sqrt(a + b*asin(c + d*x)) + 3*a**2*b*sqrt(a + b*asin(c + d*x))*asin(c + d*x) + 3*a*b**2*sqrt(a + b*a
sin(c + d*x))*asin(c + d*x)**2 + b**3*sqrt(a + b*asin(c + d*x))*asin(c + d*x)**3), x))

________________________________________________________________________________________