3.223 \(\int \frac {(c e+d e x)^2}{(a+b \sin ^{-1}(c+d x))^2} \, dx\)

Optimal. Leaf size=186 \[ \frac {e^2 \sin \left (\frac {a}{b}\right ) \text {Ci}\left (\frac {a+b \sin ^{-1}(c+d x)}{b}\right )}{4 b^2 d}-\frac {3 e^2 \sin \left (\frac {3 a}{b}\right ) \text {Ci}\left (\frac {3 \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{4 b^2 d}-\frac {e^2 \cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \sin ^{-1}(c+d x)}{b}\right )}{4 b^2 d}+\frac {3 e^2 \cos \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{4 b^2 d}-\frac {e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \left (a+b \sin ^{-1}(c+d x)\right )} \]

[Out]

-1/4*e^2*cos(a/b)*Si((a+b*arcsin(d*x+c))/b)/b^2/d+3/4*e^2*cos(3*a/b)*Si(3*(a+b*arcsin(d*x+c))/b)/b^2/d+1/4*e^2
*Ci((a+b*arcsin(d*x+c))/b)*sin(a/b)/b^2/d-3/4*e^2*Ci(3*(a+b*arcsin(d*x+c))/b)*sin(3*a/b)/b^2/d-e^2*(d*x+c)^2*(
1-(d*x+c)^2)^(1/2)/b/d/(a+b*arcsin(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 182, normalized size of antiderivative = 0.98, number of steps used = 10, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {4805, 12, 4631, 3303, 3299, 3302} \[ \frac {e^2 \sin \left (\frac {a}{b}\right ) \text {CosIntegral}\left (\frac {a}{b}+\sin ^{-1}(c+d x)\right )}{4 b^2 d}-\frac {3 e^2 \sin \left (\frac {3 a}{b}\right ) \text {CosIntegral}\left (\frac {3 a}{b}+3 \sin ^{-1}(c+d x)\right )}{4 b^2 d}-\frac {e^2 \cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\sin ^{-1}(c+d x)\right )}{4 b^2 d}+\frac {3 e^2 \cos \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 a}{b}+3 \sin ^{-1}(c+d x)\right )}{4 b^2 d}-\frac {e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \left (a+b \sin ^{-1}(c+d x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^2/(a + b*ArcSin[c + d*x])^2,x]

[Out]

-((e^2*(c + d*x)^2*Sqrt[1 - (c + d*x)^2])/(b*d*(a + b*ArcSin[c + d*x]))) + (e^2*CosIntegral[a/b + ArcSin[c + d
*x]]*Sin[a/b])/(4*b^2*d) - (3*e^2*CosIntegral[(3*a)/b + 3*ArcSin[c + d*x]]*Sin[(3*a)/b])/(4*b^2*d) - (e^2*Cos[
a/b]*SinIntegral[a/b + ArcSin[c + d*x]])/(4*b^2*d) + (3*e^2*Cos[(3*a)/b]*SinIntegral[(3*a)/b + 3*ArcSin[c + d*
x]])/(4*b^2*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 4631

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 - c^2*x^2]*(a + b*ArcSin
[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n + 1)
, Sin[x]^(m - 1)*(m - (m + 1)*Sin[x]^2), x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && G
eQ[n, -2] && LtQ[n, -1]

Rule 4805

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \frac {(c e+d e x)^2}{\left (a+b \sin ^{-1}(c+d x)\right )^2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {e^2 x^2}{\left (a+b \sin ^{-1}(x)\right )^2} \, dx,x,c+d x\right )}{d}\\ &=\frac {e^2 \operatorname {Subst}\left (\int \frac {x^2}{\left (a+b \sin ^{-1}(x)\right )^2} \, dx,x,c+d x\right )}{d}\\ &=-\frac {e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \left (a+b \sin ^{-1}(c+d x)\right )}+\frac {e^2 \operatorname {Subst}\left (\int \left (-\frac {\sin (x)}{4 (a+b x)}+\frac {3 \sin (3 x)}{4 (a+b x)}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}\\ &=-\frac {e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \left (a+b \sin ^{-1}(c+d x)\right )}-\frac {e^2 \operatorname {Subst}\left (\int \frac {\sin (x)}{a+b x} \, dx,x,\sin ^{-1}(c+d x)\right )}{4 b d}+\frac {\left (3 e^2\right ) \operatorname {Subst}\left (\int \frac {\sin (3 x)}{a+b x} \, dx,x,\sin ^{-1}(c+d x)\right )}{4 b d}\\ &=-\frac {e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \left (a+b \sin ^{-1}(c+d x)\right )}-\frac {\left (e^2 \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sin ^{-1}(c+d x)\right )}{4 b d}+\frac {\left (3 e^2 \cos \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c+d x)\right )}{4 b d}+\frac {\left (e^2 \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sin ^{-1}(c+d x)\right )}{4 b d}-\frac {\left (3 e^2 \sin \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c+d x)\right )}{4 b d}\\ &=-\frac {e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \left (a+b \sin ^{-1}(c+d x)\right )}+\frac {e^2 \text {Ci}\left (\frac {a}{b}+\sin ^{-1}(c+d x)\right ) \sin \left (\frac {a}{b}\right )}{4 b^2 d}-\frac {3 e^2 \text {Ci}\left (\frac {3 a}{b}+3 \sin ^{-1}(c+d x)\right ) \sin \left (\frac {3 a}{b}\right )}{4 b^2 d}-\frac {e^2 \cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\sin ^{-1}(c+d x)\right )}{4 b^2 d}+\frac {3 e^2 \cos \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 a}{b}+3 \sin ^{-1}(c+d x)\right )}{4 b^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.85, size = 140, normalized size = 0.75 \[ \frac {e^2 \left (\sin \left (\frac {a}{b}\right ) \text {Ci}\left (\frac {a}{b}+\sin ^{-1}(c+d x)\right )-3 \sin \left (\frac {3 a}{b}\right ) \text {Ci}\left (3 \left (\frac {a}{b}+\sin ^{-1}(c+d x)\right )\right )-\cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\sin ^{-1}(c+d x)\right )+3 \cos \left (\frac {3 a}{b}\right ) \text {Si}\left (3 \left (\frac {a}{b}+\sin ^{-1}(c+d x)\right )\right )-\frac {4 b \sqrt {1-(c+d x)^2} (c+d x)^2}{a+b \sin ^{-1}(c+d x)}\right )}{4 b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)^2/(a + b*ArcSin[c + d*x])^2,x]

[Out]

(e^2*((-4*b*(c + d*x)^2*Sqrt[1 - (c + d*x)^2])/(a + b*ArcSin[c + d*x]) + CosIntegral[a/b + ArcSin[c + d*x]]*Si
n[a/b] - 3*CosIntegral[3*(a/b + ArcSin[c + d*x])]*Sin[(3*a)/b] - Cos[a/b]*SinIntegral[a/b + ArcSin[c + d*x]] +
 3*Cos[(3*a)/b]*SinIntegral[3*(a/b + ArcSin[c + d*x])]))/(4*b^2*d)

________________________________________________________________________________________

fricas [F]  time = 0.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {d^{2} e^{2} x^{2} + 2 \, c d e^{2} x + c^{2} e^{2}}{b^{2} \arcsin \left (d x + c\right )^{2} + 2 \, a b \arcsin \left (d x + c\right ) + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((d^2*e^2*x^2 + 2*c*d*e^2*x + c^2*e^2)/(b^2*arcsin(d*x + c)^2 + 2*a*b*arcsin(d*x + c) + a^2), x)

________________________________________________________________________________________

giac [B]  time = 0.39, size = 684, normalized size = 3.68 \[ -\frac {3 \, b \arcsin \left (d x + c\right ) \cos \left (\frac {a}{b}\right )^{2} \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (d x + c\right )\right ) e^{2} \sin \left (\frac {a}{b}\right )}{b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d} + \frac {3 \, b \arcsin \left (d x + c\right ) \cos \left (\frac {a}{b}\right )^{3} e^{2} \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (d x + c\right )\right )}{b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d} - \frac {3 \, a \cos \left (\frac {a}{b}\right )^{2} \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (d x + c\right )\right ) e^{2} \sin \left (\frac {a}{b}\right )}{b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d} + \frac {3 \, a \cos \left (\frac {a}{b}\right )^{3} e^{2} \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (d x + c\right )\right )}{b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d} + \frac {3 \, b \arcsin \left (d x + c\right ) \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (d x + c\right )\right ) e^{2} \sin \left (\frac {a}{b}\right )}{4 \, {\left (b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d\right )}} + \frac {b \arcsin \left (d x + c\right ) \operatorname {Ci}\left (\frac {a}{b} + \arcsin \left (d x + c\right )\right ) e^{2} \sin \left (\frac {a}{b}\right )}{4 \, {\left (b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d\right )}} - \frac {9 \, b \arcsin \left (d x + c\right ) \cos \left (\frac {a}{b}\right ) e^{2} \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (d x + c\right )\right )}{4 \, {\left (b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d\right )}} - \frac {b \arcsin \left (d x + c\right ) \cos \left (\frac {a}{b}\right ) e^{2} \operatorname {Si}\left (\frac {a}{b} + \arcsin \left (d x + c\right )\right )}{4 \, {\left (b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d\right )}} + \frac {3 \, a \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (d x + c\right )\right ) e^{2} \sin \left (\frac {a}{b}\right )}{4 \, {\left (b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d\right )}} + \frac {a \operatorname {Ci}\left (\frac {a}{b} + \arcsin \left (d x + c\right )\right ) e^{2} \sin \left (\frac {a}{b}\right )}{4 \, {\left (b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d\right )}} - \frac {9 \, a \cos \left (\frac {a}{b}\right ) e^{2} \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (d x + c\right )\right )}{4 \, {\left (b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d\right )}} - \frac {a \cos \left (\frac {a}{b}\right ) e^{2} \operatorname {Si}\left (\frac {a}{b} + \arcsin \left (d x + c\right )\right )}{4 \, {\left (b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d\right )}} + \frac {{\left (-{\left (d x + c\right )}^{2} + 1\right )}^{\frac {3}{2}} b e^{2}}{b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d} - \frac {\sqrt {-{\left (d x + c\right )}^{2} + 1} b e^{2}}{b^{3} d \arcsin \left (d x + c\right ) + a b^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^2,x, algorithm="giac")

[Out]

-3*b*arcsin(d*x + c)*cos(a/b)^2*cos_integral(3*a/b + 3*arcsin(d*x + c))*e^2*sin(a/b)/(b^3*d*arcsin(d*x + c) +
a*b^2*d) + 3*b*arcsin(d*x + c)*cos(a/b)^3*e^2*sin_integral(3*a/b + 3*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) +
 a*b^2*d) - 3*a*cos(a/b)^2*cos_integral(3*a/b + 3*arcsin(d*x + c))*e^2*sin(a/b)/(b^3*d*arcsin(d*x + c) + a*b^2
*d) + 3*a*cos(a/b)^3*e^2*sin_integral(3*a/b + 3*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) + 3/4*b*arc
sin(d*x + c)*cos_integral(3*a/b + 3*arcsin(d*x + c))*e^2*sin(a/b)/(b^3*d*arcsin(d*x + c) + a*b^2*d) + 1/4*b*ar
csin(d*x + c)*cos_integral(a/b + arcsin(d*x + c))*e^2*sin(a/b)/(b^3*d*arcsin(d*x + c) + a*b^2*d) - 9/4*b*arcsi
n(d*x + c)*cos(a/b)*e^2*sin_integral(3*a/b + 3*arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) - 1/4*b*arcs
in(d*x + c)*cos(a/b)*e^2*sin_integral(a/b + arcsin(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) + 3/4*a*cos_int
egral(3*a/b + 3*arcsin(d*x + c))*e^2*sin(a/b)/(b^3*d*arcsin(d*x + c) + a*b^2*d) + 1/4*a*cos_integral(a/b + arc
sin(d*x + c))*e^2*sin(a/b)/(b^3*d*arcsin(d*x + c) + a*b^2*d) - 9/4*a*cos(a/b)*e^2*sin_integral(3*a/b + 3*arcsi
n(d*x + c))/(b^3*d*arcsin(d*x + c) + a*b^2*d) - 1/4*a*cos(a/b)*e^2*sin_integral(a/b + arcsin(d*x + c))/(b^3*d*
arcsin(d*x + c) + a*b^2*d) + (-(d*x + c)^2 + 1)^(3/2)*b*e^2/(b^3*d*arcsin(d*x + c) + a*b^2*d) - sqrt(-(d*x + c
)^2 + 1)*b*e^2/(b^3*d*arcsin(d*x + c) + a*b^2*d)

________________________________________________________________________________________

maple [A]  time = 0.17, size = 266, normalized size = 1.43 \[ -\frac {e^{2} \left (\arcsin \left (d x +c \right ) \Si \left (\arcsin \left (d x +c \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right ) b -\arcsin \left (d x +c \right ) \Ci \left (\arcsin \left (d x +c \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right ) b -3 \arcsin \left (d x +c \right ) \Si \left (3 \arcsin \left (d x +c \right )+\frac {3 a}{b}\right ) \cos \left (\frac {3 a}{b}\right ) b +3 \arcsin \left (d x +c \right ) \Ci \left (3 \arcsin \left (d x +c \right )+\frac {3 a}{b}\right ) \sin \left (\frac {3 a}{b}\right ) b +\Si \left (\arcsin \left (d x +c \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right ) a -\Ci \left (\arcsin \left (d x +c \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right ) a -3 \Si \left (3 \arcsin \left (d x +c \right )+\frac {3 a}{b}\right ) \cos \left (\frac {3 a}{b}\right ) a +3 \Ci \left (3 \arcsin \left (d x +c \right )+\frac {3 a}{b}\right ) \sin \left (\frac {3 a}{b}\right ) a -\cos \left (3 \arcsin \left (d x +c \right )\right ) b +\sqrt {1-\left (d x +c \right )^{2}}\, b \right )}{4 d \left (a +b \arcsin \left (d x +c \right )\right ) b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^2,x)

[Out]

-1/4/d*e^2*(arcsin(d*x+c)*Si(arcsin(d*x+c)+a/b)*cos(a/b)*b-arcsin(d*x+c)*Ci(arcsin(d*x+c)+a/b)*sin(a/b)*b-3*ar
csin(d*x+c)*Si(3*arcsin(d*x+c)+3*a/b)*cos(3*a/b)*b+3*arcsin(d*x+c)*Ci(3*arcsin(d*x+c)+3*a/b)*sin(3*a/b)*b+Si(a
rcsin(d*x+c)+a/b)*cos(a/b)*a-Ci(arcsin(d*x+c)+a/b)*sin(a/b)*a-3*Si(3*arcsin(d*x+c)+3*a/b)*cos(3*a/b)*a+3*Ci(3*
arcsin(d*x+c)+3*a/b)*sin(3*a/b)*a-cos(3*arcsin(d*x+c))*b+(1-(d*x+c)^2)^(1/2)*b)/(a+b*arcsin(d*x+c))/b^2

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c\,e+d\,e\,x\right )}^2}{{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)^2/(a + b*asin(c + d*x))^2,x)

[Out]

int((c*e + d*e*x)^2/(a + b*asin(c + d*x))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ e^{2} \left (\int \frac {c^{2}}{a^{2} + 2 a b \operatorname {asin}{\left (c + d x \right )} + b^{2} \operatorname {asin}^{2}{\left (c + d x \right )}}\, dx + \int \frac {d^{2} x^{2}}{a^{2} + 2 a b \operatorname {asin}{\left (c + d x \right )} + b^{2} \operatorname {asin}^{2}{\left (c + d x \right )}}\, dx + \int \frac {2 c d x}{a^{2} + 2 a b \operatorname {asin}{\left (c + d x \right )} + b^{2} \operatorname {asin}^{2}{\left (c + d x \right )}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**2/(a+b*asin(d*x+c))**2,x)

[Out]

e**2*(Integral(c**2/(a**2 + 2*a*b*asin(c + d*x) + b**2*asin(c + d*x)**2), x) + Integral(d**2*x**2/(a**2 + 2*a*
b*asin(c + d*x) + b**2*asin(c + d*x)**2), x) + Integral(2*c*d*x/(a**2 + 2*a*b*asin(c + d*x) + b**2*asin(c + d*
x)**2), x))

________________________________________________________________________________________