3.175 \(\int (a+b \sin ^{-1}(c+d x))^n \, dx\)

Optimal. Leaf size=147 \[ \frac {i e^{\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (n+1,\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{2 d}-\frac {i e^{-\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (n+1,-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{2 d} \]

[Out]

-1/2*I*(a+b*arcsin(d*x+c))^n*GAMMA(1+n,-I*(a+b*arcsin(d*x+c))/b)/d/exp(I*a/b)/((-I*(a+b*arcsin(d*x+c))/b)^n)+1
/2*I*exp(I*a/b)*(a+b*arcsin(d*x+c))^n*GAMMA(1+n,I*(a+b*arcsin(d*x+c))/b)/d/((I*(a+b*arcsin(d*x+c))/b)^n)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {4803, 4623, 3307, 2181} \[ \frac {i e^{\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \text {Gamma}\left (n+1,\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{2 d}-\frac {i e^{-\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \text {Gamma}\left (n+1,-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c + d*x])^n,x]

[Out]

((-I/2)*(a + b*ArcSin[c + d*x])^n*Gamma[1 + n, ((-I)*(a + b*ArcSin[c + d*x]))/b])/(d*E^((I*a)/b)*(((-I)*(a + b
*ArcSin[c + d*x]))/b)^n) + ((I/2)*E^((I*a)/b)*(a + b*ArcSin[c + d*x])^n*Gamma[1 + n, (I*(a + b*ArcSin[c + d*x]
))/b])/(d*((I*(a + b*ArcSin[c + d*x]))/b)^n)

Rule 2181

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> -Simp[(F^(g*(e - (c*f)/d))*(c +
d*x)^FracPart[m]*Gamma[m + 1, (-((f*g*Log[F])/d))*(c + d*x)])/(d*(-((f*g*Log[F])/d))^(IntPart[m] + 1)*(-((f*g*
Log[F]*(c + d*x))/d))^FracPart[m]), x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 4623

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cos[a/b - x/b], x], x, a
 + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 4803

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcSin[x])^n, x],
 x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rubi steps

\begin {align*} \int \left (a+b \sin ^{-1}(c+d x)\right )^n \, dx &=\frac {\operatorname {Subst}\left (\int \left (a+b \sin ^{-1}(x)\right )^n \, dx,x,c+d x\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int x^n \cos \left (\frac {a}{b}-\frac {x}{b}\right ) \, dx,x,a+b \sin ^{-1}(c+d x)\right )}{b d}\\ &=\frac {\operatorname {Subst}\left (\int e^{-i \left (\frac {a}{b}-\frac {x}{b}\right )} x^n \, dx,x,a+b \sin ^{-1}(c+d x)\right )}{2 b d}+\frac {\operatorname {Subst}\left (\int e^{i \left (\frac {a}{b}-\frac {x}{b}\right )} x^n \, dx,x,a+b \sin ^{-1}(c+d x)\right )}{2 b d}\\ &=-\frac {i e^{-\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (1+n,-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{2 d}+\frac {i e^{\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (1+n,\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 129, normalized size = 0.88 \[ -\frac {i e^{-\frac {i a}{b}} \left (a+b \sin ^{-1}(c+d x)\right )^n \left (\left (-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (n+1,-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )-e^{\frac {2 i a}{b}} \left (\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )^{-n} \Gamma \left (n+1,\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c + d*x])^n,x]

[Out]

((-1/2*I)*(a + b*ArcSin[c + d*x])^n*(Gamma[1 + n, ((-I)*(a + b*ArcSin[c + d*x]))/b]/(((-I)*(a + b*ArcSin[c + d
*x]))/b)^n - (E^(((2*I)*a)/b)*Gamma[1 + n, (I*(a + b*ArcSin[c + d*x]))/b])/((I*(a + b*ArcSin[c + d*x]))/b)^n))
/(d*E^((I*a)/b))

________________________________________________________________________________________

fricas [F]  time = 0.49, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b \arcsin \left (d x + c\right ) + a\right )}^{n}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^n,x, algorithm="fricas")

[Out]

integral((b*arcsin(d*x + c) + a)^n, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \arcsin \left (d x + c\right ) + a\right )}^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^n,x, algorithm="giac")

[Out]

integrate((b*arcsin(d*x + c) + a)^n, x)

________________________________________________________________________________________

maple [F]  time = 0.13, size = 0, normalized size = 0.00 \[ \int \left (a +b \arcsin \left (d x +c \right )\right )^{n}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(d*x+c))^n,x)

[Out]

int((a+b*arcsin(d*x+c))^n,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \arcsin \left (d x + c\right ) + a\right )}^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(d*x+c))^n,x, algorithm="maxima")

[Out]

integrate((b*arcsin(d*x + c) + a)^n, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^n \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c + d*x))^n,x)

[Out]

int((a + b*asin(c + d*x))^n, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \operatorname {asin}{\left (c + d x \right )}\right )^{n}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(d*x+c))**n,x)

[Out]

Integral((a + b*asin(c + d*x))**n, x)

________________________________________________________________________________________