3.167 \(\int \frac {1}{(a+b \sin ^{-1}(c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=144 \[ \frac {2 \sqrt {2 \pi } \sin \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {2 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}} \]

[Out]

-2*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/d+2*FresnelC
(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/b^(3/2)/d-2*(1-(d*x+c)^2)^(1/2)
/b/d/(a+b*arcsin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {4803, 4621, 4723, 3306, 3305, 3351, 3304, 3352} \[ \frac {2 \sqrt {2 \pi } \sin \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {2 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c + d*x])^(-3/2),x]

[Out]

(-2*Sqrt[1 - (c + d*x)^2])/(b*d*Sqrt[a + b*ArcSin[c + d*x]]) - (2*Sqrt[2*Pi]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqr
t[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(b^(3/2)*d) + (2*Sqrt[2*Pi]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x
]])/Sqrt[b]]*Sin[a/b])/(b^(3/2)*d)

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3306

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 4621

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^(n + 1))
/(b*c*(n + 1)), x] + Dist[c/(b*(n + 1)), Int[(x*(a + b*ArcSin[c*x])^(n + 1))/Sqrt[1 - c^2*x^2], x], x] /; Free
Q[{a, b, c}, x] && LtQ[n, -1]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^(
m + 1), Subst[Int[(a + b*x)^n*Sin[x]^m*Cos[x]^(2*p + 1), x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n},
x] && EqQ[c^2*d + e, 0] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 4803

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcSin[x])^n, x],
 x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b \sin ^{-1}(c+d x)\right )^{3/2}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{\left (a+b \sin ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac {2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {2 \operatorname {Subst}\left (\int \frac {x}{\sqrt {1-x^2} \sqrt {a+b \sin ^{-1}(x)}} \, dx,x,c+d x\right )}{b d}\\ &=-\frac {2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {2 \operatorname {Subst}\left (\int \frac {\sin (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}\\ &=-\frac {2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {\left (2 \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}+\frac {\left (2 \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}\\ &=-\frac {2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {\left (4 \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}+\frac {\left (4 \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}\\ &=-\frac {2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {2 \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {2 \sqrt {2 \pi } C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{b^{3/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.32, size = 185, normalized size = 1.28 \[ \frac {e^{-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \left (e^{i \sin ^{-1}(c+d x)} \sqrt {-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {1}{2},-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )+e^{\frac {i a}{b}} \left (e^{\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \sqrt {\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {1}{2},\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )-e^{2 i \sin ^{-1}(c+d x)}-1\right )\right )}{b d \sqrt {a+b \sin ^{-1}(c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSin[c + d*x])^(-3/2),x]

[Out]

(E^(I*ArcSin[c + d*x])*Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-I)*(a + b*ArcSin[c + d*x]))/b] + E
^((I*a)/b)*(-1 - E^((2*I)*ArcSin[c + d*x]) + E^((I*(a + b*ArcSin[c + d*x]))/b)*Sqrt[(I*(a + b*ArcSin[c + d*x])
)/b]*Gamma[1/2, (I*(a + b*ArcSin[c + d*x]))/b]))/(b*d*E^((I*(a + b*ArcSin[c + d*x]))/b)*Sqrt[a + b*ArcSin[c +
d*x]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(d*x + c) + a)^(-3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.17, size = 161, normalized size = 1.12 \[ -\frac {2 \left (\sqrt {2}\, \sqrt {\frac {1}{b}}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {\pi }-\sqrt {2}\, \sqrt {\frac {1}{b}}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {\pi }+\cos \left (\frac {a +b \arcsin \left (d x +c \right )}{b}-\frac {a}{b}\right )\right )}{d b \sqrt {a +b \arcsin \left (d x +c \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*arcsin(d*x+c))^(3/2),x)

[Out]

-2/d/b*(2^(1/2)*(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcs
in(d*x+c))^(1/2)/b)*Pi^(1/2)-2^(1/2)*(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*sin(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/
(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*Pi^(1/2)+cos((a+b*arcsin(d*x+c))/b-a/b))/(a+b*arcsin(d*x+c))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*arcsin(d*x + c) + a)^(-3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*asin(c + d*x))^(3/2),x)

[Out]

int(1/(a + b*asin(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \operatorname {asin}{\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*asin(d*x+c))**(3/2),x)

[Out]

Integral((a + b*asin(c + d*x))**(-3/2), x)

________________________________________________________________________________________