3.156 \(\int x \sqrt {a+b \sin ^{-1}(c+d x)} \, dx\)

Optimal. Leaf size=269 \[ -\frac {\sqrt {\frac {\pi }{2}} \sqrt {b} c \sin \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{d^2}+\frac {\sqrt {\pi } \sqrt {b} \cos \left (\frac {2 a}{b}\right ) C\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{8 d^2}+\frac {\sqrt {\pi } \sqrt {b} \sin \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{8 d^2}+\frac {\sqrt {\frac {\pi }{2}} \sqrt {b} c \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{d^2}-\frac {c (c+d x) \sqrt {a+b \sin ^{-1}(c+d x)}}{d^2}-\frac {\cos \left (2 \sin ^{-1}(c+d x)\right ) \sqrt {a+b \sin ^{-1}(c+d x)}}{4 d^2} \]

[Out]

1/2*c*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*b^(1/2)*2^(1/2)*Pi^(1/2)/d^2-1/2*c
*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(a/b)*b^(1/2)*2^(1/2)*Pi^(1/2)/d^2+1/8*cos(2*
a/b)*FresnelC(2*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2)/Pi^(1/2))*b^(1/2)*Pi^(1/2)/d^2+1/8*FresnelS(2*(a+b*arcsin(d*
x+c))^(1/2)/b^(1/2)/Pi^(1/2))*sin(2*a/b)*b^(1/2)*Pi^(1/2)/d^2-c*(d*x+c)*(a+b*arcsin(d*x+c))^(1/2)/d^2-1/4*cos(
2*arcsin(d*x+c))*(a+b*arcsin(d*x+c))^(1/2)/d^2

________________________________________________________________________________________

Rubi [A]  time = 0.77, antiderivative size = 269, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 10, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.625, Rules used = {4805, 4747, 6741, 6742, 3386, 3353, 3352, 3351, 3385, 3354} \[ -\frac {\sqrt {\frac {\pi }{2}} \sqrt {b} c \sin \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{d^2}+\frac {\sqrt {\pi } \sqrt {b} \cos \left (\frac {2 a}{b}\right ) \text {FresnelC}\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {\pi } \sqrt {b}}\right )}{8 d^2}+\frac {\sqrt {\pi } \sqrt {b} \sin \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{8 d^2}+\frac {\sqrt {\frac {\pi }{2}} \sqrt {b} c \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{d^2}-\frac {c (c+d x) \sqrt {a+b \sin ^{-1}(c+d x)}}{d^2}-\frac {\cos \left (2 \sin ^{-1}(c+d x)\right ) \sqrt {a+b \sin ^{-1}(c+d x)}}{4 d^2} \]

Antiderivative was successfully verified.

[In]

Int[x*Sqrt[a + b*ArcSin[c + d*x]],x]

[Out]

-((c*(c + d*x)*Sqrt[a + b*ArcSin[c + d*x]])/d^2) - (Sqrt[a + b*ArcSin[c + d*x]]*Cos[2*ArcSin[c + d*x]])/(4*d^2
) + (Sqrt[b]*Sqrt[Pi]*Cos[(2*a)/b]*FresnelC[(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])])/(8*d^2) + (Sq
rt[b]*c*Sqrt[Pi/2]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/d^2 - (Sqrt[b]*c*Sqrt[
Pi/2]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[a/b])/d^2 + (Sqrt[b]*Sqrt[Pi]*FresnelS[(2
*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])]*Sin[(2*a)/b])/(8*d^2)

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3353

Int[Sin[(c_) + (d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Dist[Sin[c], Int[Cos[d*(e + f*x)^2], x], x] + Dist[
Cos[c], Int[Sin[d*(e + f*x)^2], x], x] /; FreeQ[{c, d, e, f}, x]

Rule 3354

Int[Cos[(c_) + (d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Dist[Cos[c], Int[Cos[d*(e + f*x)^2], x], x] - Dist[
Sin[c], Int[Sin[d*(e + f*x)^2], x], x] /; FreeQ[{c, d, e, f}, x]

Rule 3385

Int[((e_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> -Simp[(e^(n - 1)*(e*x)^(m - n + 1)*Cos[c + d
*x^n])/(d*n), x] + Dist[(e^n*(m - n + 1))/(d*n), Int[(e*x)^(m - n)*Cos[c + d*x^n], x], x] /; FreeQ[{c, d, e},
x] && IGtQ[n, 0] && LtQ[n, m + 1]

Rule 3386

Int[Cos[(c_.) + (d_.)*(x_)^(n_)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e^(n - 1)*(e*x)^(m - n + 1)*Sin[c + d*
x^n])/(d*n), x] - Dist[(e^n*(m - n + 1))/(d*n), Int[(e*x)^(m - n)*Sin[c + d*x^n], x], x] /; FreeQ[{c, d, e}, x
] && IGtQ[n, 0] && LtQ[n, m + 1]

Rule 4747

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[I
nt[(a + b*x)^n*Cos[x]*(c*d + e*Sin[x])^m, x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[m, 0
]

Rule 4805

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int x \sqrt {a+b \sin ^{-1}(c+d x)} \, dx &=\frac {\operatorname {Subst}\left (\int \left (-\frac {c}{d}+\frac {x}{d}\right ) \sqrt {a+b \sin ^{-1}(x)} \, dx,x,c+d x\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \sqrt {a+b x} \cos (x) \left (-\frac {c}{d}+\frac {\sin (x)}{d}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{d}\\ &=-\frac {2 \operatorname {Subst}\left (\int x^2 \cos \left (\frac {a-x^2}{b}\right ) \left (c+\sin \left (\frac {a-x^2}{b}\right )\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^2}\\ &=-\frac {2 \operatorname {Subst}\left (\int x^2 \cos \left (\frac {a}{b}-\frac {x^2}{b}\right ) \left (c+\sin \left (\frac {a-x^2}{b}\right )\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^2}\\ &=-\frac {2 \operatorname {Subst}\left (\int \left (c x^2 \cos \left (\frac {a}{b}-\frac {x^2}{b}\right )+\frac {1}{2} x^2 \sin \left (\frac {2 a}{b}-\frac {2 x^2}{b}\right )\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^2}\\ &=-\frac {\operatorname {Subst}\left (\int x^2 \sin \left (\frac {2 a}{b}-\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^2}-\frac {(2 c) \operatorname {Subst}\left (\int x^2 \cos \left (\frac {a}{b}-\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b d^2}\\ &=-\frac {c (c+d x) \sqrt {a+b \sin ^{-1}(c+d x)}}{d^2}-\frac {\sqrt {a+b \sin ^{-1}(c+d x)} \cos \left (2 \sin ^{-1}(c+d x)\right )}{4 d^2}+\frac {\operatorname {Subst}\left (\int \cos \left (\frac {2 a}{b}-\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{4 d^2}-\frac {c \operatorname {Subst}\left (\int \sin \left (\frac {a}{b}-\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{d^2}\\ &=-\frac {c (c+d x) \sqrt {a+b \sin ^{-1}(c+d x)}}{d^2}-\frac {\sqrt {a+b \sin ^{-1}(c+d x)} \cos \left (2 \sin ^{-1}(c+d x)\right )}{4 d^2}+\frac {\left (c \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{d^2}+\frac {\cos \left (\frac {2 a}{b}\right ) \operatorname {Subst}\left (\int \cos \left (\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{4 d^2}-\frac {\left (c \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{d^2}+\frac {\sin \left (\frac {2 a}{b}\right ) \operatorname {Subst}\left (\int \sin \left (\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{4 d^2}\\ &=-\frac {c (c+d x) \sqrt {a+b \sin ^{-1}(c+d x)}}{d^2}-\frac {\sqrt {a+b \sin ^{-1}(c+d x)} \cos \left (2 \sin ^{-1}(c+d x)\right )}{4 d^2}+\frac {\sqrt {b} \sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) C\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{8 d^2}+\frac {\sqrt {b} c \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{d^2}-\frac {\sqrt {b} c \sqrt {\frac {\pi }{2}} C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{d^2}+\frac {\sqrt {b} \sqrt {\pi } S\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )}{8 d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 3.21, size = 256, normalized size = 0.95 \[ \frac {\frac {\sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) C\left (\frac {2 \sqrt {\frac {1}{b}} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {\pi }}\right )}{\sqrt {\frac {1}{b}}}+\frac {\sqrt {\pi } \sin \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {\frac {1}{b}} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {\pi }}\right )}{\sqrt {\frac {1}{b}}}+\frac {2 \left (-\left (\cos \left (2 \sin ^{-1}(c+d x)\right ) \left (a+b \sin ^{-1}(c+d x)\right )\right )-2 b c e^{-\frac {i a}{b}} \sqrt {-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {3}{2},-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )-2 b c e^{\frac {i a}{b}} \sqrt {\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {3}{2},\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )\right )}{\sqrt {a+b \sin ^{-1}(c+d x)}}}{8 d^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x*Sqrt[a + b*ArcSin[c + d*x]],x]

[Out]

((Sqrt[Pi]*Cos[(2*a)/b]*FresnelC[(2*Sqrt[b^(-1)]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[Pi]])/Sqrt[b^(-1)] + (2*(-(
(a + b*ArcSin[c + d*x])*Cos[2*ArcSin[c + d*x]]) - (2*b*c*Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[3/2, ((-
I)*(a + b*ArcSin[c + d*x]))/b])/E^((I*a)/b) - 2*b*c*E^((I*a)/b)*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[3/2,
 (I*(a + b*ArcSin[c + d*x]))/b]))/Sqrt[a + b*ArcSin[c + d*x]] + (Sqrt[Pi]*FresnelS[(2*Sqrt[b^(-1)]*Sqrt[a + b*
ArcSin[c + d*x]])/Sqrt[Pi]]*Sin[(2*a)/b])/Sqrt[b^(-1)])/(8*d^2)

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [B]  time = 2.63, size = 1118, normalized size = 4.16 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/4*sqrt(2)*sqrt(pi)*b^3*c*i*erf(-1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*i/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b
*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(a*i/b)/((b^3*i/sqrt(abs(b)) + b^2*sqrt(abs(b)))*d^2) - 1/4*sqrt(2)*sq
rt(pi)*b^3*c*i*erf(1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*i/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c)
 + a)*sqrt(abs(b))/b)*e^(-a*i/b)/((b^3*i/sqrt(abs(b)) - b^2*sqrt(abs(b)))*d^2) - 1/2*sqrt(2)*sqrt(pi)*a*b^2*c*
erf(-1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*i/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs
(b))/b)*e^(a*i/b)/((b^3*i/sqrt(abs(b)) + b^2*sqrt(abs(b)))*d^2) + 1/2*sqrt(2)*sqrt(pi)*a*b^2*c*erf(1/2*sqrt(2)
*sqrt(b*arcsin(d*x + c) + a)*i/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(-a*i/
b)/((b^3*i/sqrt(abs(b)) - b^2*sqrt(abs(b)))*d^2) + 1/4*sqrt(pi)*a*b^(3/2)*i*erf(-sqrt(b*arcsin(d*x + c) + a)*s
qrt(b)*i/abs(b) - sqrt(b*arcsin(d*x + c) + a)/sqrt(b))*e^(2*a*i/b)/((b^3*i/abs(b) + b^2)*d^2) + 1/4*sqrt(pi)*a
*b^(3/2)*i*erf(sqrt(b*arcsin(d*x + c) + a)*sqrt(b)*i/abs(b) - sqrt(b*arcsin(d*x + c) + a)/sqrt(b))*e^(-2*a*i/b
)/((b^3*i/abs(b) - b^2)*d^2) + sqrt(pi)*a*b*c*erf(-1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*i/sqrt(abs(b)) - 1/
2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(a*i/b)/((sqrt(2)*b^2*i/sqrt(abs(b)) + sqrt(2)*b*sqrt(
abs(b)))*d^2) - sqrt(pi)*a*b*c*erf(1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*i/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b
*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(-a*i/b)/((sqrt(2)*b^2*i/sqrt(abs(b)) - sqrt(2)*b*sqrt(abs(b)))*d^2) -
 1/4*sqrt(pi)*a*b*i*erf(sqrt(b*arcsin(d*x + c) + a)*sqrt(b)*i/abs(b) - sqrt(b*arcsin(d*x + c) + a)/sqrt(b))*e^
(-2*a*i/b)/((b^(5/2)*i/abs(b) - b^(3/2))*d^2) - 1/16*sqrt(pi)*b^(5/2)*erf(-sqrt(b*arcsin(d*x + c) + a)*sqrt(b)
*i/abs(b) - sqrt(b*arcsin(d*x + c) + a)/sqrt(b))*e^(2*a*i/b)/((b^3*i/abs(b) + b^2)*d^2) - 1/4*sqrt(pi)*a*sqrt(
b)*i*erf(-sqrt(b*arcsin(d*x + c) + a)*sqrt(b)*i/abs(b) - sqrt(b*arcsin(d*x + c) + a)/sqrt(b))*e^(2*a*i/b)/((b^
2*i/abs(b) + b)*d^2) + 1/16*sqrt(pi)*b^(5/2)*erf(sqrt(b*arcsin(d*x + c) + a)*sqrt(b)*i/abs(b) - sqrt(b*arcsin(
d*x + c) + a)/sqrt(b))*e^(-2*a*i/b)/((b^3*i/abs(b) - b^2)*d^2) + 1/2*sqrt(b*arcsin(d*x + c) + a)*c*i*e^(i*arcs
in(d*x + c))/d^2 - 1/2*sqrt(b*arcsin(d*x + c) + a)*c*i*e^(-i*arcsin(d*x + c))/d^2 - 1/8*sqrt(b*arcsin(d*x + c)
 + a)*e^(2*i*arcsin(d*x + c))/d^2 - 1/8*sqrt(b*arcsin(d*x + c) + a)*e^(-2*i*arcsin(d*x + c))/d^2

________________________________________________________________________________________

maple [A]  time = 0.36, size = 369, normalized size = 1.37 \[ -\frac {-4 \sqrt {2}\, \cos \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {a +b \arcsin \left (d x +c \right )}\, \sqrt {\frac {1}{b}}\, \sqrt {\pi }\, b c +4 \sqrt {2}\, \sin \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {a +b \arcsin \left (d x +c \right )}\, \sqrt {\frac {1}{b}}\, \sqrt {\pi }\, b c -\cos \left (\frac {2 a}{b}\right ) \FresnelC \left (\frac {2 \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {a +b \arcsin \left (d x +c \right )}\, \sqrt {\frac {1}{b}}\, \sqrt {\pi }\, b -\sin \left (\frac {2 a}{b}\right ) \mathrm {S}\left (\frac {2 \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {a +b \arcsin \left (d x +c \right )}\, \sqrt {\frac {1}{b}}\, \sqrt {\pi }\, b +8 \arcsin \left (d x +c \right ) \sin \left (\frac {a +b \arcsin \left (d x +c \right )}{b}-\frac {a}{b}\right ) b c +2 \arcsin \left (d x +c \right ) \cos \left (\frac {2 a +2 b \arcsin \left (d x +c \right )}{b}-\frac {2 a}{b}\right ) b +8 \sin \left (\frac {a +b \arcsin \left (d x +c \right )}{b}-\frac {a}{b}\right ) a c +2 \cos \left (\frac {2 a +2 b \arcsin \left (d x +c \right )}{b}-\frac {2 a}{b}\right ) a}{8 d^{2} \sqrt {a +b \arcsin \left (d x +c \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsin(d*x+c))^(1/2),x)

[Out]

-1/8/d^2/(a+b*arcsin(d*x+c))^(1/2)*(-4*2^(1/2)*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+
c))^(1/2)/b)*(a+b*arcsin(d*x+c))^(1/2)*(1/b)^(1/2)*Pi^(1/2)*b*c+4*2^(1/2)*sin(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(
1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*(a+b*arcsin(d*x+c))^(1/2)*(1/b)^(1/2)*Pi^(1/2)*b*c-cos(2*a/b)*FresnelC
(2/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*(a+b*arcsin(d*x+c))^(1/2)*(1/b)^(1/2)*Pi^(1/2)*b-sin(2*a/
b)*FresnelS(2/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*(a+b*arcsin(d*x+c))^(1/2)*(1/b)^(1/2)*Pi^(1/2)
*b+8*arcsin(d*x+c)*sin((a+b*arcsin(d*x+c))/b-a/b)*b*c+2*arcsin(d*x+c)*cos(2*(a+b*arcsin(d*x+c))/b-2*a/b)*b+8*s
in((a+b*arcsin(d*x+c))/b-a/b)*a*c+2*cos(2*(a+b*arcsin(d*x+c))/b-2*a/b)*a)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \arcsin \left (d x + c\right ) + a} x\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*arcsin(d*x + c) + a)*x, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int x\,\sqrt {a+b\,\mathrm {asin}\left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*asin(c + d*x))^(1/2),x)

[Out]

int(x*(a + b*asin(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asin(d*x+c))**(1/2),x)

[Out]

Integral(x*sqrt(a + b*asin(c + d*x)), x)

________________________________________________________________________________________