3.614 \(\int \cot ^6(c+d x) (a+a \sin (c+d x))^3 \, dx\)

Optimal. Leaf size=175 \[ -\frac {a^3 \cos ^3(c+d x)}{3 d}+\frac {a^3 \cos (c+d x)}{d}-\frac {a^3 \cot ^5(c+d x)}{5 d}-\frac {2 a^3 \cot ^3(c+d x)}{3 d}+\frac {5 a^3 \cot (c+d x)}{d}+\frac {3 a^3 \sin (c+d x) \cos (c+d x)}{2 d}-\frac {25 a^3 \tanh ^{-1}(\cos (c+d x))}{8 d}-\frac {3 a^3 \cot (c+d x) \csc ^3(c+d x)}{4 d}+\frac {23 a^3 \cot (c+d x) \csc (c+d x)}{8 d}+\frac {13 a^3 x}{2} \]

[Out]

13/2*a^3*x-25/8*a^3*arctanh(cos(d*x+c))/d+a^3*cos(d*x+c)/d-1/3*a^3*cos(d*x+c)^3/d+5*a^3*cot(d*x+c)/d-2/3*a^3*c
ot(d*x+c)^3/d-1/5*a^3*cot(d*x+c)^5/d+23/8*a^3*cot(d*x+c)*csc(d*x+c)/d-3/4*a^3*cot(d*x+c)*csc(d*x+c)^3/d+3/2*a^
3*cos(d*x+c)*sin(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.30, antiderivative size = 175, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2709, 3770, 3767, 8, 3768, 2635, 2633} \[ -\frac {a^3 \cos ^3(c+d x)}{3 d}+\frac {a^3 \cos (c+d x)}{d}-\frac {a^3 \cot ^5(c+d x)}{5 d}-\frac {2 a^3 \cot ^3(c+d x)}{3 d}+\frac {5 a^3 \cot (c+d x)}{d}+\frac {3 a^3 \sin (c+d x) \cos (c+d x)}{2 d}-\frac {25 a^3 \tanh ^{-1}(\cos (c+d x))}{8 d}-\frac {3 a^3 \cot (c+d x) \csc ^3(c+d x)}{4 d}+\frac {23 a^3 \cot (c+d x) \csc (c+d x)}{8 d}+\frac {13 a^3 x}{2} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^6*(a + a*Sin[c + d*x])^3,x]

[Out]

(13*a^3*x)/2 - (25*a^3*ArcTanh[Cos[c + d*x]])/(8*d) + (a^3*Cos[c + d*x])/d - (a^3*Cos[c + d*x]^3)/(3*d) + (5*a
^3*Cot[c + d*x])/d - (2*a^3*Cot[c + d*x]^3)/(3*d) - (a^3*Cot[c + d*x]^5)/(5*d) + (23*a^3*Cot[c + d*x]*Csc[c +
d*x])/(8*d) - (3*a^3*Cot[c + d*x]*Csc[c + d*x]^3)/(4*d) + (3*a^3*Cos[c + d*x]*Sin[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2633

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2709

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^(p_), x_Symbol] :> Dist[a^p, Int[Expan
dIntegrand[(Sin[e + f*x]^p*(a + b*Sin[e + f*x])^(m - p/2))/(a - b*Sin[e + f*x])^(p/2), x], x], x] /; FreeQ[{a,
 b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p/2] && (LtQ[p, 0] || GtQ[m - p/2, 0])

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \cot ^6(c+d x) (a+a \sin (c+d x))^3 \, dx &=\frac {\int \left (8 a^9+6 a^9 \csc (c+d x)-6 a^9 \csc ^2(c+d x)-8 a^9 \csc ^3(c+d x)+3 a^9 \csc ^5(c+d x)+a^9 \csc ^6(c+d x)-3 a^9 \sin ^2(c+d x)-a^9 \sin ^3(c+d x)\right ) \, dx}{a^6}\\ &=8 a^3 x+a^3 \int \csc ^6(c+d x) \, dx-a^3 \int \sin ^3(c+d x) \, dx+\left (3 a^3\right ) \int \csc ^5(c+d x) \, dx-\left (3 a^3\right ) \int \sin ^2(c+d x) \, dx+\left (6 a^3\right ) \int \csc (c+d x) \, dx-\left (6 a^3\right ) \int \csc ^2(c+d x) \, dx-\left (8 a^3\right ) \int \csc ^3(c+d x) \, dx\\ &=8 a^3 x-\frac {6 a^3 \tanh ^{-1}(\cos (c+d x))}{d}+\frac {4 a^3 \cot (c+d x) \csc (c+d x)}{d}-\frac {3 a^3 \cot (c+d x) \csc ^3(c+d x)}{4 d}+\frac {3 a^3 \cos (c+d x) \sin (c+d x)}{2 d}-\frac {1}{2} \left (3 a^3\right ) \int 1 \, dx+\frac {1}{4} \left (9 a^3\right ) \int \csc ^3(c+d x) \, dx-\left (4 a^3\right ) \int \csc (c+d x) \, dx+\frac {a^3 \operatorname {Subst}\left (\int \left (1-x^2\right ) \, dx,x,\cos (c+d x)\right )}{d}-\frac {a^3 \operatorname {Subst}\left (\int \left (1+2 x^2+x^4\right ) \, dx,x,\cot (c+d x)\right )}{d}+\frac {\left (6 a^3\right ) \operatorname {Subst}(\int 1 \, dx,x,\cot (c+d x))}{d}\\ &=\frac {13 a^3 x}{2}-\frac {2 a^3 \tanh ^{-1}(\cos (c+d x))}{d}+\frac {a^3 \cos (c+d x)}{d}-\frac {a^3 \cos ^3(c+d x)}{3 d}+\frac {5 a^3 \cot (c+d x)}{d}-\frac {2 a^3 \cot ^3(c+d x)}{3 d}-\frac {a^3 \cot ^5(c+d x)}{5 d}+\frac {23 a^3 \cot (c+d x) \csc (c+d x)}{8 d}-\frac {3 a^3 \cot (c+d x) \csc ^3(c+d x)}{4 d}+\frac {3 a^3 \cos (c+d x) \sin (c+d x)}{2 d}+\frac {1}{8} \left (9 a^3\right ) \int \csc (c+d x) \, dx\\ &=\frac {13 a^3 x}{2}-\frac {25 a^3 \tanh ^{-1}(\cos (c+d x))}{8 d}+\frac {a^3 \cos (c+d x)}{d}-\frac {a^3 \cos ^3(c+d x)}{3 d}+\frac {5 a^3 \cot (c+d x)}{d}-\frac {2 a^3 \cot ^3(c+d x)}{3 d}-\frac {a^3 \cot ^5(c+d x)}{5 d}+\frac {23 a^3 \cot (c+d x) \csc (c+d x)}{8 d}-\frac {3 a^3 \cot (c+d x) \csc ^3(c+d x)}{4 d}+\frac {3 a^3 \cos (c+d x) \sin (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.71, size = 271, normalized size = 1.55 \[ \frac {a^3 (\sin (c+d x)+1)^3 \left (6240 (c+d x)+720 \sin (2 (c+d x))+720 \cos (c+d x)-80 \cos (3 (c+d x))-2624 \tan \left (\frac {1}{2} (c+d x)\right )+2624 \cot \left (\frac {1}{2} (c+d x)\right )-45 \csc ^4\left (\frac {1}{2} (c+d x)\right )+690 \csc ^2\left (\frac {1}{2} (c+d x)\right )+45 \sec ^4\left (\frac {1}{2} (c+d x)\right )-690 \sec ^2\left (\frac {1}{2} (c+d x)\right )+3000 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-3000 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-3 \sin (c+d x) \csc ^6\left (\frac {1}{2} (c+d x)\right )-19 \sin (c+d x) \csc ^4\left (\frac {1}{2} (c+d x)\right )+304 \sin ^4\left (\frac {1}{2} (c+d x)\right ) \csc ^3(c+d x)+6 \tan \left (\frac {1}{2} (c+d x)\right ) \sec ^4\left (\frac {1}{2} (c+d x)\right )\right )}{960 d \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )^6} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^6*(a + a*Sin[c + d*x])^3,x]

[Out]

(a^3*(1 + Sin[c + d*x])^3*(6240*(c + d*x) + 720*Cos[c + d*x] - 80*Cos[3*(c + d*x)] + 2624*Cot[(c + d*x)/2] + 6
90*Csc[(c + d*x)/2]^2 - 45*Csc[(c + d*x)/2]^4 - 3000*Log[Cos[(c + d*x)/2]] + 3000*Log[Sin[(c + d*x)/2]] - 690*
Sec[(c + d*x)/2]^2 + 45*Sec[(c + d*x)/2]^4 + 304*Csc[c + d*x]^3*Sin[(c + d*x)/2]^4 - 19*Csc[(c + d*x)/2]^4*Sin
[c + d*x] - 3*Csc[(c + d*x)/2]^6*Sin[c + d*x] + 720*Sin[2*(c + d*x)] - 2624*Tan[(c + d*x)/2] + 6*Sec[(c + d*x)
/2]^4*Tan[(c + d*x)/2]))/(960*d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^6)

________________________________________________________________________________________

fricas [A]  time = 0.77, size = 278, normalized size = 1.59 \[ -\frac {360 \, a^{3} \cos \left (d x + c\right )^{7} - 2392 \, a^{3} \cos \left (d x + c\right )^{5} + 3640 \, a^{3} \cos \left (d x + c\right )^{3} - 1560 \, a^{3} \cos \left (d x + c\right ) + 375 \, {\left (a^{3} \cos \left (d x + c\right )^{4} - 2 \, a^{3} \cos \left (d x + c\right )^{2} + a^{3}\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 375 \, {\left (a^{3} \cos \left (d x + c\right )^{4} - 2 \, a^{3} \cos \left (d x + c\right )^{2} + a^{3}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 10 \, {\left (8 \, a^{3} \cos \left (d x + c\right )^{7} - 156 \, a^{3} d x \cos \left (d x + c\right )^{4} - 40 \, a^{3} \cos \left (d x + c\right )^{5} + 312 \, a^{3} d x \cos \left (d x + c\right )^{2} + 125 \, a^{3} \cos \left (d x + c\right )^{3} - 156 \, a^{3} d x - 75 \, a^{3} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{240 \, {\left (d \cos \left (d x + c\right )^{4} - 2 \, d \cos \left (d x + c\right )^{2} + d\right )} \sin \left (d x + c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^6*(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/240*(360*a^3*cos(d*x + c)^7 - 2392*a^3*cos(d*x + c)^5 + 3640*a^3*cos(d*x + c)^3 - 1560*a^3*cos(d*x + c) + 3
75*(a^3*cos(d*x + c)^4 - 2*a^3*cos(d*x + c)^2 + a^3)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 375*(a^3*cos(d
*x + c)^4 - 2*a^3*cos(d*x + c)^2 + a^3)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 10*(8*a^3*cos(d*x + c)^7 -
 156*a^3*d*x*cos(d*x + c)^4 - 40*a^3*cos(d*x + c)^5 + 312*a^3*d*x*cos(d*x + c)^2 + 125*a^3*cos(d*x + c)^3 - 15
6*a^3*d*x - 75*a^3*cos(d*x + c))*sin(d*x + c))/((d*cos(d*x + c)^4 - 2*d*cos(d*x + c)^2 + d)*sin(d*x + c))

________________________________________________________________________________________

giac [A]  time = 0.39, size = 276, normalized size = 1.58 \[ \frac {6 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 45 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 50 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 600 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 6240 \, {\left (d x + c\right )} a^{3} + 3000 \, a^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) - 2580 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {320 \, {\left (9 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 12 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 9 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 4 \, a^{3}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3}} - \frac {6850 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 2580 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 600 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 50 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 45 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, a^{3}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5}}}{960 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^6*(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/960*(6*a^3*tan(1/2*d*x + 1/2*c)^5 + 45*a^3*tan(1/2*d*x + 1/2*c)^4 + 50*a^3*tan(1/2*d*x + 1/2*c)^3 - 600*a^3*
tan(1/2*d*x + 1/2*c)^2 + 6240*(d*x + c)*a^3 + 3000*a^3*log(abs(tan(1/2*d*x + 1/2*c))) - 2580*a^3*tan(1/2*d*x +
 1/2*c) - 320*(9*a^3*tan(1/2*d*x + 1/2*c)^5 - 12*a^3*tan(1/2*d*x + 1/2*c)^2 - 9*a^3*tan(1/2*d*x + 1/2*c) - 4*a
^3)/(tan(1/2*d*x + 1/2*c)^2 + 1)^3 - (6850*a^3*tan(1/2*d*x + 1/2*c)^5 - 2580*a^3*tan(1/2*d*x + 1/2*c)^4 - 600*
a^3*tan(1/2*d*x + 1/2*c)^3 + 50*a^3*tan(1/2*d*x + 1/2*c)^2 + 45*a^3*tan(1/2*d*x + 1/2*c) + 6*a^3)/tan(1/2*d*x
+ 1/2*c)^5)/d

________________________________________________________________________________________

maple [A]  time = 0.45, size = 293, normalized size = 1.67 \[ \frac {5 a^{3} \left (\cos ^{7}\left (d x +c \right )\right )}{8 d \sin \left (d x +c \right )^{2}}+\frac {5 a^{3} \left (\cos ^{5}\left (d x +c \right )\right )}{8 d}+\frac {25 a^{3} \left (\cos ^{3}\left (d x +c \right )\right )}{24 d}+\frac {25 a^{3} \cos \left (d x +c \right )}{8 d}+\frac {25 a^{3} \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{8 d}-\frac {a^{3} \left (\cos ^{7}\left (d x +c \right )\right )}{d \sin \left (d x +c \right )^{3}}+\frac {4 a^{3} \left (\cos ^{7}\left (d x +c \right )\right )}{d \sin \left (d x +c \right )}+\frac {4 a^{3} \left (\cos ^{5}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{d}+\frac {5 a^{3} \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{d}+\frac {15 a^{3} \cos \left (d x +c \right ) \sin \left (d x +c \right )}{2 d}+\frac {13 a^{3} x}{2}+\frac {13 a^{3} c}{2 d}-\frac {3 a^{3} \left (\cos ^{7}\left (d x +c \right )\right )}{4 d \sin \left (d x +c \right )^{4}}-\frac {a^{3} \left (\cot ^{5}\left (d x +c \right )\right )}{5 d}+\frac {a^{3} \left (\cot ^{3}\left (d x +c \right )\right )}{3 d}-\frac {a^{3} \cot \left (d x +c \right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^6*csc(d*x+c)^6*(a+a*sin(d*x+c))^3,x)

[Out]

5/8/d*a^3/sin(d*x+c)^2*cos(d*x+c)^7+5/8*a^3*cos(d*x+c)^5/d+25/24*a^3*cos(d*x+c)^3/d+25/8*a^3*cos(d*x+c)/d+25/8
/d*a^3*ln(csc(d*x+c)-cot(d*x+c))-1/d*a^3/sin(d*x+c)^3*cos(d*x+c)^7+4/d*a^3/sin(d*x+c)*cos(d*x+c)^7+4*a^3*cos(d
*x+c)^5*sin(d*x+c)/d+5*a^3*cos(d*x+c)^3*sin(d*x+c)/d+15/2*a^3*cos(d*x+c)*sin(d*x+c)/d+13/2*a^3*x+13/2/d*a^3*c-
3/4/d*a^3/sin(d*x+c)^4*cos(d*x+c)^7-1/5*a^3*cot(d*x+c)^5/d+1/3*a^3*cot(d*x+c)^3/d-a^3*cot(d*x+c)/d

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 250, normalized size = 1.43 \[ -\frac {20 \, {\left (4 \, \cos \left (d x + c\right )^{3} - \frac {6 \, \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{2} - 1} + 24 \, \cos \left (d x + c\right ) - 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} a^{3} - 120 \, {\left (15 \, d x + 15 \, c + \frac {15 \, \tan \left (d x + c\right )^{4} + 10 \, \tan \left (d x + c\right )^{2} - 2}{\tan \left (d x + c\right )^{5} + \tan \left (d x + c\right )^{3}}\right )} a^{3} + 16 \, {\left (15 \, d x + 15 \, c + \frac {15 \, \tan \left (d x + c\right )^{4} - 5 \, \tan \left (d x + c\right )^{2} + 3}{\tan \left (d x + c\right )^{5}}\right )} a^{3} + 45 \, a^{3} {\left (\frac {2 \, {\left (9 \, \cos \left (d x + c\right )^{3} - 7 \, \cos \left (d x + c\right )\right )}}{\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1} - 16 \, \cos \left (d x + c\right ) + 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) - 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )}}{240 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^6*(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/240*(20*(4*cos(d*x + c)^3 - 6*cos(d*x + c)/(cos(d*x + c)^2 - 1) + 24*cos(d*x + c) - 15*log(cos(d*x + c) + 1
) + 15*log(cos(d*x + c) - 1))*a^3 - 120*(15*d*x + 15*c + (15*tan(d*x + c)^4 + 10*tan(d*x + c)^2 - 2)/(tan(d*x
+ c)^5 + tan(d*x + c)^3))*a^3 + 16*(15*d*x + 15*c + (15*tan(d*x + c)^4 - 5*tan(d*x + c)^2 + 3)/tan(d*x + c)^5)
*a^3 + 45*a^3*(2*(9*cos(d*x + c)^3 - 7*cos(d*x + c))/(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1) - 16*cos(d*x + c)
 + 15*log(cos(d*x + c) + 1) - 15*log(cos(d*x + c) - 1)))/d

________________________________________________________________________________________

mupad [B]  time = 8.92, size = 408, normalized size = 2.33 \[ \frac {5\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{96\,d}-\frac {5\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,d}+\frac {3\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{64\,d}+\frac {a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{160\,d}+\frac {25\,a^3\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{8\,d}+\frac {13\,a^3\,\mathrm {atan}\left (\frac {169\,a^6}{\frac {325\,a^6}{4}-169\,a^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}+\frac {325\,a^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4\,\left (\frac {325\,a^6}{4}-169\,a^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}\right )}{d}+\frac {-10\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+20\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+\frac {769\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8}{3}+\frac {373\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{2}+\frac {1744\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{5}+\frac {589\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{6}+\frac {402\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{5}+\frac {31\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{2}-\frac {34\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{15}-\frac {3\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2}-\frac {a^3}{5}}{d\,\left (32\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}+96\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+96\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+32\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\right )}-\frac {43\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{16\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^6*(a + a*sin(c + d*x))^3)/sin(c + d*x)^6,x)

[Out]

(5*a^3*tan(c/2 + (d*x)/2)^3)/(96*d) - (5*a^3*tan(c/2 + (d*x)/2)^2)/(8*d) + (3*a^3*tan(c/2 + (d*x)/2)^4)/(64*d)
 + (a^3*tan(c/2 + (d*x)/2)^5)/(160*d) + (25*a^3*log(tan(c/2 + (d*x)/2)))/(8*d) + (13*a^3*atan((169*a^6)/((325*
a^6)/4 - 169*a^6*tan(c/2 + (d*x)/2)) + (325*a^6*tan(c/2 + (d*x)/2))/(4*((325*a^6)/4 - 169*a^6*tan(c/2 + (d*x)/
2)))))/d + ((31*a^3*tan(c/2 + (d*x)/2)^3)/2 - (34*a^3*tan(c/2 + (d*x)/2)^2)/15 + (402*a^3*tan(c/2 + (d*x)/2)^4
)/5 + (589*a^3*tan(c/2 + (d*x)/2)^5)/6 + (1744*a^3*tan(c/2 + (d*x)/2)^6)/5 + (373*a^3*tan(c/2 + (d*x)/2)^7)/2
+ (769*a^3*tan(c/2 + (d*x)/2)^8)/3 + 20*a^3*tan(c/2 + (d*x)/2)^9 - 10*a^3*tan(c/2 + (d*x)/2)^10 - a^3/5 - (3*a
^3*tan(c/2 + (d*x)/2))/2)/(d*(32*tan(c/2 + (d*x)/2)^5 + 96*tan(c/2 + (d*x)/2)^7 + 96*tan(c/2 + (d*x)/2)^9 + 32
*tan(c/2 + (d*x)/2)^11)) - (43*a^3*tan(c/2 + (d*x)/2))/(16*d)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)**6*(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________