3.131 \(\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=121 \[ \frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

[Out]

2*(g*cos(f*x+e))^(5/2)/f/g/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2)-2*g*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(
1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)/c/f/(a+a*sin(f*x+e)
)^(1/2)/(c-c*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.57, antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2852, 2842, 2640, 2639} \[ \frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(g*Cos[e + f*x])^(3/2)/(Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

(2*(g*Cos[e + f*x])^(5/2))/(f*g*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)) - (2*g*Sqrt[Cos[e + f*x]]
*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2842

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(g*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2852

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^
n)/(a*f*g*(2*m + p + 1)), x] + Dist[(m + n + p + 1)/(a*(2*m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f
*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && E
qQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] &&  !LtQ[m, n, -1] && IntegersQ[2*m, 2*n, 2*p]

Rubi steps

\begin {align*} \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx &=\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{c}\\ &=\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {(g \cos (e+f x)) \int \sqrt {g \cos (e+f x)} \, dx}{c \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {\left (g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{c \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.73, size = 148, normalized size = 1.22 \[ \frac {2 (g \cos (e+f x))^{3/2} \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right ) \left (\sqrt {\cos (e+f x)} \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )+E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \left (\sin \left (\frac {1}{2} (e+f x)\right )-\cos \left (\frac {1}{2} (e+f x)\right )\right )\right )}{c f \cos ^{\frac {3}{2}}(e+f x) \sqrt {a (\sin (e+f x)+1)} \sqrt {c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(g*Cos[e + f*x])^(3/2)/(Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

(2*(g*Cos[e + f*x])^(3/2)*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(EllipticE[(e + f*x)/2, 2]*(-Cos[(e + f*x)/2]
+ Sin[(e + f*x)/2]) + Sqrt[Cos[e + f*x]]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])))/(c*f*Cos[e + f*x]^(3/2)*Sqrt[
a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

fricas [F]  time = 0.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} g}{a c^{2} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - a c^{2} \cos \left (f x + e\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*g/(a*c^2*cos(f*x + e)*sin(f*
x + e) - a*c^2*cos(f*x + e)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}}}{\sqrt {a \sin \left (f x + e\right ) + a} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((g*cos(f*x + e))^(3/2)/(sqrt(a*sin(f*x + e) + a)*(-c*sin(f*x + e) + c)^(3/2)), x)

________________________________________________________________________________________

maple [C]  time = 0.60, size = 925, normalized size = 7.64 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*cos(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x)

[Out]

-1/2/f*(g*cos(f*x+e))^(3/2)*(-1+cos(f*x+e))^2*(sin(f*x+e)-1)*(4*I*sin(f*x+e)*cos(f*x+e)^2*(1/(cos(f*x+e)+1))^(
1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*EllipticF(I*(-1+cos(f*x+e))/sin(f*
x+e),I)-4*I*sin(f*x+e)*cos(f*x+e)^2*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*(-cos(f*x+e)/(c
os(f*x+e)+1)^2)^(1/2)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)+8*I*sin(f*x+e)*cos(f*x+e)*(1/(cos(f*x+e)+1))^(
1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*EllipticF(I*(-1+cos(f*x+e))/sin(f*
x+e),I)-8*I*sin(f*x+e)*cos(f*x+e)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*(-cos(f*x+e)/(cos
(f*x+e)+1)^2)^(1/2)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)+4*I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*
x+e)+1))^(1/2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*sin(f*x+e)-4*I*(
1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*EllipticE(I*(-1
+cos(f*x+e))/sin(f*x+e),I)*sin(f*x+e)-4*sin(f*x+e)*cos(f*x+e)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)*
ln(-2*(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e
)+1)^2)^(1/2)-1)/sin(f*x+e)^2)*sin(f*x+e)+cos(f*x+e)*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-
cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)*sin(f*x+e)+4*cos(f*x+e)^2*(-
cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-4*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*sin(f*x+e)-4*(-cos(f*x+e)/(cos(f*x+e
)+1)^2)^(1/2))/(cos(f*x+e)+1)/(a*(1+sin(f*x+e)))^(1/2)/sin(f*x+e)^5/(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)/(-c*(
sin(f*x+e)-1))^(3/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}}}{\sqrt {a \sin \left (f x + e\right ) + a} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)/(sqrt(a*sin(f*x + e) + a)*(-c*sin(f*x + e) + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}}{\sqrt {a+a\,\sin \left (e+f\,x\right )}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*cos(e + f*x))^(3/2)/((a + a*sin(e + f*x))^(1/2)*(c - c*sin(e + f*x))^(3/2)),x)

[Out]

int((g*cos(e + f*x))^(3/2)/((a + a*sin(e + f*x))^(1/2)*(c - c*sin(e + f*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________