3.597 \(\int \frac {(e \cos (c+d x))^{7/2}}{(a+b \sin (c+d x))^3} \, dx\)

Optimal. Leaf size=497 \[ -\frac {5 e^{7/2} \left (3 a^2-2 b^2\right ) \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{8 b^{7/2} d \left (b^2-a^2\right )^{3/4}}-\frac {5 e^{7/2} \left (3 a^2-2 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{8 b^{7/2} d \left (b^2-a^2\right )^{3/4}}+\frac {5 a e^4 \left (3 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 b}{b-\sqrt {b^2-a^2}};\left .\frac {1}{2} (c+d x)\right |2\right )}{8 b^4 d \left (a^2-b \left (b-\sqrt {b^2-a^2}\right )\right ) \sqrt {e \cos (c+d x)}}+\frac {5 a e^4 \left (3 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 b}{b+\sqrt {b^2-a^2}};\left .\frac {1}{2} (c+d x)\right |2\right )}{8 b^4 d \left (a^2-b \left (\sqrt {b^2-a^2}+b\right )\right ) \sqrt {e \cos (c+d x)}}-\frac {15 a e^4 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b^4 d \sqrt {e \cos (c+d x)}}-\frac {5 e^3 \sqrt {e \cos (c+d x)} (3 a+2 b \sin (c+d x))}{4 b^3 d (a+b \sin (c+d x))}-\frac {e (e \cos (c+d x))^{5/2}}{2 b d (a+b \sin (c+d x))^2} \]

[Out]

-5/8*(3*a^2-2*b^2)*e^(7/2)*arctan(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/b^(7/2)/(-a^2+b^2)^(3
/4)/d-5/8*(3*a^2-2*b^2)*e^(7/2)*arctanh(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/b^(7/2)/(-a^2+b
^2)^(3/4)/d-1/2*e*(e*cos(d*x+c))^(5/2)/b/d/(a+b*sin(d*x+c))^2-15/4*a*e^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*
d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/b^4/d/(e*cos(d*x+c))^(1/2)+5/8*a*(3*a^2-2*b^
2)*e^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(b-(-a^2+b^2)^(1/2)),
2^(1/2))*cos(d*x+c)^(1/2)/b^4/d/(a^2-b*(b-(-a^2+b^2)^(1/2)))/(e*cos(d*x+c))^(1/2)+5/8*a*(3*a^2-2*b^2)*e^4*(cos
(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*co
s(d*x+c)^(1/2)/b^4/d/(a^2-b*(b+(-a^2+b^2)^(1/2)))/(e*cos(d*x+c))^(1/2)-5/4*e^3*(3*a+2*b*sin(d*x+c))*(e*cos(d*x
+c))^(1/2)/b^3/d/(a+b*sin(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 1.08, antiderivative size = 497, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 12, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {2693, 2863, 2867, 2642, 2641, 2702, 2807, 2805, 329, 212, 208, 205} \[ -\frac {5 e^{7/2} \left (3 a^2-2 b^2\right ) \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{8 b^{7/2} d \left (b^2-a^2\right )^{3/4}}-\frac {5 e^{7/2} \left (3 a^2-2 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{8 b^{7/2} d \left (b^2-a^2\right )^{3/4}}+\frac {5 a e^4 \left (3 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 b}{b-\sqrt {b^2-a^2}};\left .\frac {1}{2} (c+d x)\right |2\right )}{8 b^4 d \left (a^2-b \left (b-\sqrt {b^2-a^2}\right )\right ) \sqrt {e \cos (c+d x)}}+\frac {5 a e^4 \left (3 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 b}{b+\sqrt {b^2-a^2}};\left .\frac {1}{2} (c+d x)\right |2\right )}{8 b^4 d \left (a^2-b \left (\sqrt {b^2-a^2}+b\right )\right ) \sqrt {e \cos (c+d x)}}-\frac {5 e^3 \sqrt {e \cos (c+d x)} (3 a+2 b \sin (c+d x))}{4 b^3 d (a+b \sin (c+d x))}-\frac {15 a e^4 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b^4 d \sqrt {e \cos (c+d x)}}-\frac {e (e \cos (c+d x))^{5/2}}{2 b d (a+b \sin (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^(7/2)/(a + b*Sin[c + d*x])^3,x]

[Out]

(-5*(3*a^2 - 2*b^2)*e^(7/2)*ArcTan[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(8*b^(7/2)*(-
a^2 + b^2)^(3/4)*d) - (5*(3*a^2 - 2*b^2)*e^(7/2)*ArcTanh[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sq
rt[e])])/(8*b^(7/2)*(-a^2 + b^2)^(3/4)*d) - (15*a*e^4*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(4*b^4*d*S
qrt[e*Cos[c + d*x]]) + (5*a*(3*a^2 - 2*b^2)*e^4*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c
 + d*x)/2, 2])/(8*b^4*(a^2 - b*(b - Sqrt[-a^2 + b^2]))*d*Sqrt[e*Cos[c + d*x]]) + (5*a*(3*a^2 - 2*b^2)*e^4*Sqrt
[Cos[c + d*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/(8*b^4*(a^2 - b*(b + Sqrt[-a^2 + b^2]
))*d*Sqrt[e*Cos[c + d*x]]) - (e*(e*Cos[c + d*x])^(5/2))/(2*b*d*(a + b*Sin[c + d*x])^2) - (5*e^3*Sqrt[e*Cos[c +
 d*x]]*(3*a + 2*b*Sin[c + d*x]))/(4*b^3*d*(a + b*Sin[c + d*x]))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2693

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(g^2*(p - 1))/(b*(m + 1)), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]

Rule 2702

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, -Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[(b*g)/f, Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2863

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c*(m + p + 1) -
a*d*p + b*d*(m + 1)*Sin[e + f*x]))/(b^2*f*(m + 1)*(m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(m + 1)*(m + p +
1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Simp[b*d*(m + 1) + (b*c*(m + p + 1) - a*d*p)*Si
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && N
eQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2867

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {(e \cos (c+d x))^{7/2}}{(a+b \sin (c+d x))^3} \, dx &=-\frac {e (e \cos (c+d x))^{5/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {\left (5 e^2\right ) \int \frac {(e \cos (c+d x))^{3/2} \sin (c+d x)}{(a+b \sin (c+d x))^2} \, dx}{4 b}\\ &=-\frac {e (e \cos (c+d x))^{5/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {5 e^3 \sqrt {e \cos (c+d x)} (3 a+2 b \sin (c+d x))}{4 b^3 d (a+b \sin (c+d x))}+\frac {\left (5 e^4\right ) \int \frac {-b-\frac {3}{2} a \sin (c+d x)}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx}{4 b^3}\\ &=-\frac {e (e \cos (c+d x))^{5/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {5 e^3 \sqrt {e \cos (c+d x)} (3 a+2 b \sin (c+d x))}{4 b^3 d (a+b \sin (c+d x))}-\frac {\left (15 a e^4\right ) \int \frac {1}{\sqrt {e \cos (c+d x)}} \, dx}{8 b^4}+\frac {\left (5 \left (3 a^2-2 b^2\right ) e^4\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx}{8 b^4}\\ &=-\frac {e (e \cos (c+d x))^{5/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {5 e^3 \sqrt {e \cos (c+d x)} (3 a+2 b \sin (c+d x))}{4 b^3 d (a+b \sin (c+d x))}-\frac {\left (5 a \left (3 a^2-2 b^2\right ) e^4\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{16 b^4 \sqrt {-a^2+b^2}}-\frac {\left (5 a \left (3 a^2-2 b^2\right ) e^4\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{16 b^4 \sqrt {-a^2+b^2}}+\frac {\left (5 \left (3 a^2-2 b^2\right ) e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \left (\left (a^2-b^2\right ) e^2+b^2 x^2\right )} \, dx,x,e \cos (c+d x)\right )}{8 b^3 d}-\frac {\left (15 a e^4 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{8 b^4 \sqrt {e \cos (c+d x)}}\\ &=-\frac {15 a e^4 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b^4 d \sqrt {e \cos (c+d x)}}-\frac {e (e \cos (c+d x))^{5/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {5 e^3 \sqrt {e \cos (c+d x)} (3 a+2 b \sin (c+d x))}{4 b^3 d (a+b \sin (c+d x))}+\frac {\left (5 \left (3 a^2-2 b^2\right ) e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\left (a^2-b^2\right ) e^2+b^2 x^4} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{4 b^3 d}-\frac {\left (5 a \left (3 a^2-2 b^2\right ) e^4 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \left (\sqrt {-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{16 b^4 \sqrt {-a^2+b^2} \sqrt {e \cos (c+d x)}}-\frac {\left (5 a \left (3 a^2-2 b^2\right ) e^4 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \left (\sqrt {-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{16 b^4 \sqrt {-a^2+b^2} \sqrt {e \cos (c+d x)}}\\ &=-\frac {15 a e^4 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b^4 d \sqrt {e \cos (c+d x)}}+\frac {5 a \left (3 a^2-2 b^2\right ) e^4 \sqrt {\cos (c+d x)} \Pi \left (\frac {2 b}{b-\sqrt {-a^2+b^2}};\left .\frac {1}{2} (c+d x)\right |2\right )}{8 b^4 \left (a^2-b \left (b-\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \cos (c+d x)}}-\frac {5 a \left (3 a^2-2 b^2\right ) e^4 \sqrt {\cos (c+d x)} \Pi \left (\frac {2 b}{b+\sqrt {-a^2+b^2}};\left .\frac {1}{2} (c+d x)\right |2\right )}{8 b^4 \sqrt {-a^2+b^2} \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}-\frac {e (e \cos (c+d x))^{5/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {5 e^3 \sqrt {e \cos (c+d x)} (3 a+2 b \sin (c+d x))}{4 b^3 d (a+b \sin (c+d x))}-\frac {\left (5 \left (3 a^2-2 b^2\right ) e^4\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e-b x^2} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{8 b^3 \sqrt {-a^2+b^2} d}-\frac {\left (5 \left (3 a^2-2 b^2\right ) e^4\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e+b x^2} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{8 b^3 \sqrt {-a^2+b^2} d}\\ &=-\frac {5 \left (3 a^2-2 b^2\right ) e^{7/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{8 b^{7/2} \left (-a^2+b^2\right )^{3/4} d}-\frac {5 \left (3 a^2-2 b^2\right ) e^{7/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{8 b^{7/2} \left (-a^2+b^2\right )^{3/4} d}-\frac {15 a e^4 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b^4 d \sqrt {e \cos (c+d x)}}+\frac {5 a \left (3 a^2-2 b^2\right ) e^4 \sqrt {\cos (c+d x)} \Pi \left (\frac {2 b}{b-\sqrt {-a^2+b^2}};\left .\frac {1}{2} (c+d x)\right |2\right )}{8 b^4 \left (a^2-b \left (b-\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \cos (c+d x)}}-\frac {5 a \left (3 a^2-2 b^2\right ) e^4 \sqrt {\cos (c+d x)} \Pi \left (\frac {2 b}{b+\sqrt {-a^2+b^2}};\left .\frac {1}{2} (c+d x)\right |2\right )}{8 b^4 \sqrt {-a^2+b^2} \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}-\frac {e (e \cos (c+d x))^{5/2}}{2 b d (a+b \sin (c+d x))^2}-\frac {5 e^3 \sqrt {e \cos (c+d x)} (3 a+2 b \sin (c+d x))}{4 b^3 d (a+b \sin (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 26.37, size = 1954, normalized size = 3.93 \[ \text {result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(e*Cos[c + d*x])^(7/2)/(a + b*Sin[c + d*x])^3,x]

[Out]

((e*Cos[c + d*x])^(7/2)*Sec[c + d*x]^3*((a^2 - b^2)/(2*b^3*(a + b*Sin[c + d*x])^2) - (9*a)/(4*b^3*(a + b*Sin[c
 + d*x]))))/d - ((e*Cos[c + d*x])^(7/2)*((-12*b*(a + b*Sqrt[1 - Cos[c + d*x]^2])*((5*a*(a^2 - b^2)*AppellF1[1/
4, 1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)]*Sqrt[Cos[c + d*x]])/(Sqrt[1 - Cos[c + d*x]^
2]*(5*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)] - 2*(2*b^2*App
ellF1[5/4, 1/2, 2, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)] + (-a^2 + b^2)*AppellF1[5/4, 3/2, 1
, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)])*Cos[c + d*x]^2)*(a^2 + b^2*(-1 + Cos[c + d*x]^2)))
- ((1/8 - I/8)*Sqrt[b]*(2*ArcTan[1 - ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + (
(1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)] + Log[Sqrt[-a^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^
(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]] - Log[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[
Cos[c + d*x]] + I*b*Cos[c + d*x]]))/(-a^2 + b^2)^(3/4))*Sin[c + d*x])/(Sqrt[1 - Cos[c + d*x]^2]*(a + b*Sin[c +
 d*x])) + (4*b*(a + b*Sqrt[1 - Cos[c + d*x]^2])*Cos[2*(c + d*x)]*(((1/2 - I/2)*(-2*a^2 + b^2)*ArcTan[1 - ((1 +
 I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)])/(b^(3/2)*(-a^2 + b^2)^(3/4)) - ((1/2 - I/2)*(-2*a^2 + b^2
)*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)])/(b^(3/2)*(-a^2 + b^2)^(3/4)) + (4*Sqrt[
Cos[c + d*x]])/b - (4*a*AppellF1[5/4, 1/2, 1, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)]*Cos[c +
d*x]^(5/2))/(5*(a^2 - b^2)) + (10*a*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2
)/(-a^2 + b^2)]*Sqrt[Cos[c + d*x]])/(Sqrt[1 - Cos[c + d*x]^2]*(5*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[c
+ d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)] - 2*(2*b^2*AppellF1[5/4, 1/2, 2, 9/4, Cos[c + d*x]^2, (b^2*Cos[c
+ d*x]^2)/(-a^2 + b^2)] + (-a^2 + b^2)*AppellF1[5/4, 3/2, 1, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 +
 b^2)])*Cos[c + d*x]^2)*(a^2 + b^2*(-1 + Cos[c + d*x]^2))) + ((1/4 - I/4)*(-2*a^2 + b^2)*Log[Sqrt[-a^2 + b^2]
- (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]])/(b^(3/2)*(-a^2 + b^2)^(3/4)) - ((
1/4 - I/4)*(-2*a^2 + b^2)*Log[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*C
os[c + d*x]])/(b^(3/2)*(-a^2 + b^2)^(3/4)))*Sin[c + d*x])/(Sqrt[1 - Cos[c + d*x]^2]*(-1 + 2*Cos[c + d*x]^2)*(a
 + b*Sin[c + d*x])) - (14*a*(a + b*Sqrt[1 - Cos[c + d*x]^2])*((5*b*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Cos
[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)]*Sqrt[Cos[c + d*x]]*Sqrt[1 - Cos[c + d*x]^2])/((-5*(a^2 - b^2)*
AppellF1[1/4, -1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)] + 2*(2*b^2*AppellF1[5/4, -1/2,
2, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)] + (a^2 - b^2)*AppellF1[5/4, 1/2, 1, 9/4, Cos[c + d*
x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)])*Cos[c + d*x]^2)*(a^2 + b^2*(-1 + Cos[c + d*x]^2))) + (a*(-2*ArcTan[1
 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[c + d*x]])/(a^2 - b^2)^(1/4)] + 2*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Cos[c + d*x]])
/(a^2 - b^2)^(1/4)] - Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[c + d*x]] + b*Cos[c + d
*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[c + d*x]] + b*Cos[c + d*x]]))/(4*Sqrt[
2]*Sqrt[b]*(a^2 - b^2)^(3/4)))*Sin[c + d*x]^2)/((1 - Cos[c + d*x]^2)*(a + b*Sin[c + d*x]))))/(8*b^3*d*Cos[c +
d*x]^(7/2))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(7/2)/(a+b*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(7/2)/(a+b*sin(d*x+c))^3,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [C]  time = 29.36, size = 65216, normalized size = 131.22 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^(7/2)/(a+b*sin(d*x+c))^3,x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \cos \left (d x + c\right )\right )^{\frac {7}{2}}}{{\left (b \sin \left (d x + c\right ) + a\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(7/2)/(a+b*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((e*cos(d*x + c))^(7/2)/(b*sin(d*x + c) + a)^3, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (e\,\cos \left (c+d\,x\right )\right )}^{7/2}}{{\left (a+b\,\sin \left (c+d\,x\right )\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(c + d*x))^(7/2)/(a + b*sin(c + d*x))^3,x)

[Out]

int((e*cos(c + d*x))^(7/2)/(a + b*sin(c + d*x))^3, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**(7/2)/(a+b*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________