3.38 \(\int \sec ^6(c+d x) (a+a \sin (c+d x))^3 \, dx\)

Optimal. Leaf size=92 \[ \frac {a^6 \cos (c+d x)}{5 d (a-a \sin (c+d x))^3}+\frac {2 a^5 \cos (c+d x)}{15 d (a-a \sin (c+d x))^2}+\frac {2 a^6 \cos (c+d x)}{15 d \left (a^3-a^3 \sin (c+d x)\right )} \]

[Out]

1/5*a^6*cos(d*x+c)/d/(a-a*sin(d*x+c))^3+2/15*a^5*cos(d*x+c)/d/(a-a*sin(d*x+c))^2+2/15*a^6*cos(d*x+c)/d/(a^3-a^
3*sin(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2670, 2650, 2648} \[ \frac {2 a^6 \cos (c+d x)}{15 d \left (a^3-a^3 \sin (c+d x)\right )}+\frac {a^6 \cos (c+d x)}{5 d (a-a \sin (c+d x))^3}+\frac {2 a^5 \cos (c+d x)}{15 d (a-a \sin (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^6*(a + a*Sin[c + d*x])^3,x]

[Out]

(a^6*Cos[c + d*x])/(5*d*(a - a*Sin[c + d*x])^3) + (2*a^5*Cos[c + d*x])/(15*d*(a - a*Sin[c + d*x])^2) + (2*a^6*
Cos[c + d*x])/(15*d*(a^3 - a^3*Sin[c + d*x]))

Rule 2648

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Simp[Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2670

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(a/g)^
(2*m), Int[(g*Cos[e + f*x])^(2*m + p)/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 -
 b^2, 0] && IntegerQ[m] && LtQ[p, -1] && GeQ[2*m + p, 0]

Rubi steps

\begin {align*} \int \sec ^6(c+d x) (a+a \sin (c+d x))^3 \, dx &=a^6 \int \frac {1}{(a-a \sin (c+d x))^3} \, dx\\ &=\frac {a^6 \cos (c+d x)}{5 d (a-a \sin (c+d x))^3}+\frac {1}{5} \left (2 a^5\right ) \int \frac {1}{(a-a \sin (c+d x))^2} \, dx\\ &=\frac {a^6 \cos (c+d x)}{5 d (a-a \sin (c+d x))^3}+\frac {2 a^5 \cos (c+d x)}{15 d (a-a \sin (c+d x))^2}+\frac {1}{15} \left (2 a^4\right ) \int \frac {1}{a-a \sin (c+d x)} \, dx\\ &=\frac {a^6 \cos (c+d x)}{5 d (a-a \sin (c+d x))^3}+\frac {2 a^5 \cos (c+d x)}{15 d (a-a \sin (c+d x))^2}+\frac {2 a^4 \cos (c+d x)}{15 d (a-a \sin (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 110, normalized size = 1.20 \[ \frac {2 a^3 \tan ^5(c+d x)}{15 d}+\frac {7 a^3 \sec ^5(c+d x)}{15 d}+\frac {a^3 \tan (c+d x) \sec ^4(c+d x)}{d}+\frac {a^3 \tan ^2(c+d x) \sec ^3(c+d x)}{3 d}-\frac {a^3 \tan ^3(c+d x) \sec ^2(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^6*(a + a*Sin[c + d*x])^3,x]

[Out]

(7*a^3*Sec[c + d*x]^5)/(15*d) + (a^3*Sec[c + d*x]^4*Tan[c + d*x])/d + (a^3*Sec[c + d*x]^3*Tan[c + d*x]^2)/(3*d
) - (a^3*Sec[c + d*x]^2*Tan[c + d*x]^3)/(3*d) + (2*a^3*Tan[c + d*x]^5)/(15*d)

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 149, normalized size = 1.62 \[ \frac {2 \, a^{3} \cos \left (d x + c\right )^{3} - 4 \, a^{3} \cos \left (d x + c\right )^{2} - 9 \, a^{3} \cos \left (d x + c\right ) - 3 \, a^{3} + {\left (2 \, a^{3} \cos \left (d x + c\right )^{2} + 6 \, a^{3} \cos \left (d x + c\right ) - 3 \, a^{3}\right )} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right )^{3} + 3 \, d \cos \left (d x + c\right )^{2} - 2 \, d \cos \left (d x + c\right ) - {\left (d \cos \left (d x + c\right )^{2} - 2 \, d \cos \left (d x + c\right ) - 4 \, d\right )} \sin \left (d x + c\right ) - 4 \, d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6*(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/15*(2*a^3*cos(d*x + c)^3 - 4*a^3*cos(d*x + c)^2 - 9*a^3*cos(d*x + c) - 3*a^3 + (2*a^3*cos(d*x + c)^2 + 6*a^3
*cos(d*x + c) - 3*a^3)*sin(d*x + c))/(d*cos(d*x + c)^3 + 3*d*cos(d*x + c)^2 - 2*d*cos(d*x + c) - (d*cos(d*x +
c)^2 - 2*d*cos(d*x + c) - 4*d)*sin(d*x + c) - 4*d)

________________________________________________________________________________________

giac [A]  time = 0.82, size = 86, normalized size = 0.93 \[ -\frac {2 \, {\left (15 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 30 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 40 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 20 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 7 \, a^{3}\right )}}{15 \, d {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6*(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

-2/15*(15*a^3*tan(1/2*d*x + 1/2*c)^4 - 30*a^3*tan(1/2*d*x + 1/2*c)^3 + 40*a^3*tan(1/2*d*x + 1/2*c)^2 - 20*a^3*
tan(1/2*d*x + 1/2*c) + 7*a^3)/(d*(tan(1/2*d*x + 1/2*c) - 1)^5)

________________________________________________________________________________________

maple [A]  time = 0.26, size = 171, normalized size = 1.86 \[ \frac {a^{3} \left (\frac {\sin ^{4}\left (d x +c \right )}{5 \cos \left (d x +c \right )^{5}}+\frac {\sin ^{4}\left (d x +c \right )}{15 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{4}\left (d x +c \right )}{15 \cos \left (d x +c \right )}-\frac {\left (2+\sin ^{2}\left (d x +c \right )\right ) \cos \left (d x +c \right )}{15}\right )+3 a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{5 \cos \left (d x +c \right )^{5}}+\frac {2 \left (\sin ^{3}\left (d x +c \right )\right )}{15 \cos \left (d x +c \right )^{3}}\right )+\frac {3 a^{3}}{5 \cos \left (d x +c \right )^{5}}-a^{3} \left (-\frac {8}{15}-\frac {\left (\sec ^{4}\left (d x +c \right )\right )}{5}-\frac {4 \left (\sec ^{2}\left (d x +c \right )\right )}{15}\right ) \tan \left (d x +c \right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^6*(a+a*sin(d*x+c))^3,x)

[Out]

1/d*(a^3*(1/5*sin(d*x+c)^4/cos(d*x+c)^5+1/15*sin(d*x+c)^4/cos(d*x+c)^3-1/15*sin(d*x+c)^4/cos(d*x+c)-1/15*(2+si
n(d*x+c)^2)*cos(d*x+c))+3*a^3*(1/5*sin(d*x+c)^3/cos(d*x+c)^5+2/15*sin(d*x+c)^3/cos(d*x+c)^3)+3/5*a^3/cos(d*x+c
)^5-a^3*(-8/15-1/5*sec(d*x+c)^4-4/15*sec(d*x+c)^2)*tan(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 103, normalized size = 1.12 \[ \frac {{\left (3 \, \tan \left (d x + c\right )^{5} + 10 \, \tan \left (d x + c\right )^{3} + 15 \, \tan \left (d x + c\right )\right )} a^{3} + 3 \, {\left (3 \, \tan \left (d x + c\right )^{5} + 5 \, \tan \left (d x + c\right )^{3}\right )} a^{3} - \frac {{\left (5 \, \cos \left (d x + c\right )^{2} - 3\right )} a^{3}}{\cos \left (d x + c\right )^{5}} + \frac {9 \, a^{3}}{\cos \left (d x + c\right )^{5}}}{15 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6*(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

1/15*((3*tan(d*x + c)^5 + 10*tan(d*x + c)^3 + 15*tan(d*x + c))*a^3 + 3*(3*tan(d*x + c)^5 + 5*tan(d*x + c)^3)*a
^3 - (5*cos(d*x + c)^2 - 3)*a^3/cos(d*x + c)^5 + 9*a^3/cos(d*x + c)^5)/d

________________________________________________________________________________________

mupad [B]  time = 4.69, size = 135, normalized size = 1.47 \[ \frac {2\,a^3\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (7\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-20\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+40\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-30\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+15\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\right )}{15\,d\,{\left (\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}^5} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^3/cos(c + d*x)^6,x)

[Out]

(2*a^3*cos(c/2 + (d*x)/2)*(7*cos(c/2 + (d*x)/2)^4 + 15*sin(c/2 + (d*x)/2)^4 - 30*cos(c/2 + (d*x)/2)*sin(c/2 +
(d*x)/2)^3 - 20*cos(c/2 + (d*x)/2)^3*sin(c/2 + (d*x)/2) + 40*cos(c/2 + (d*x)/2)^2*sin(c/2 + (d*x)/2)^2))/(15*d
*(cos(c/2 + (d*x)/2) - sin(c/2 + (d*x)/2))^5)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**6*(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________