3.320 \(\int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=193 \[ \frac {256 (a \sin (c+d x)+a)^{3/2}}{585 a^4 d e (e \cos (c+d x))^{3/2}}-\frac {128 \sqrt {a \sin (c+d x)+a}}{195 a^3 d e (e \cos (c+d x))^{3/2}}-\frac {32}{195 a^2 d e \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{3/2}}-\frac {16}{117 a d e (a \sin (c+d x)+a)^{3/2} (e \cos (c+d x))^{3/2}}-\frac {2}{13 d e (a \sin (c+d x)+a)^{5/2} (e \cos (c+d x))^{3/2}} \]

[Out]

-2/13/d/e/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^(5/2)-16/117/a/d/e/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^(3/2)
+256/585*(a+a*sin(d*x+c))^(3/2)/a^4/d/e/(e*cos(d*x+c))^(3/2)-32/195/a^2/d/e/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+
c))^(1/2)-128/195*(a+a*sin(d*x+c))^(1/2)/a^3/d/e/(e*cos(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.38, antiderivative size = 193, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2672, 2671} \[ \frac {256 (a \sin (c+d x)+a)^{3/2}}{585 a^4 d e (e \cos (c+d x))^{3/2}}-\frac {128 \sqrt {a \sin (c+d x)+a}}{195 a^3 d e (e \cos (c+d x))^{3/2}}-\frac {32}{195 a^2 d e \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{3/2}}-\frac {16}{117 a d e (a \sin (c+d x)+a)^{3/2} (e \cos (c+d x))^{3/2}}-\frac {2}{13 d e (a \sin (c+d x)+a)^{5/2} (e \cos (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((e*Cos[c + d*x])^(5/2)*(a + a*Sin[c + d*x])^(5/2)),x]

[Out]

-2/(13*d*e*(e*Cos[c + d*x])^(3/2)*(a + a*Sin[c + d*x])^(5/2)) - 16/(117*a*d*e*(e*Cos[c + d*x])^(3/2)*(a + a*Si
n[c + d*x])^(3/2)) - 32/(195*a^2*d*e*(e*Cos[c + d*x])^(3/2)*Sqrt[a + a*Sin[c + d*x]]) - (128*Sqrt[a + a*Sin[c
+ d*x]])/(195*a^3*d*e*(e*Cos[c + d*x])^(3/2)) + (256*(a + a*Sin[c + d*x])^(3/2))/(585*a^4*d*e*(e*Cos[c + d*x])
^(3/2))

Rule 2671

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(g*
Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*m), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^
2, 0] && EqQ[Simplify[m + p + 1], 0] &&  !ILtQ[p, 0]

Rule 2672

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(g*
Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*Simplify[2*m + p + 1]), x] + Dist[Simplify[m + p + 1]/(a*
Simplify[2*m + p + 1]), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m
, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + p + 1], 0] && NeQ[2*m + p + 1, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))^{5/2}} \, dx &=-\frac {2}{13 d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{5/2}}+\frac {8 \int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))^{3/2}} \, dx}{13 a}\\ &=-\frac {2}{13 d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{5/2}}-\frac {16}{117 a d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{3/2}}+\frac {16 \int \frac {1}{(e \cos (c+d x))^{5/2} \sqrt {a+a \sin (c+d x)}} \, dx}{39 a^2}\\ &=-\frac {2}{13 d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{5/2}}-\frac {16}{117 a d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{3/2}}-\frac {32}{195 a^2 d e (e \cos (c+d x))^{3/2} \sqrt {a+a \sin (c+d x)}}+\frac {64 \int \frac {\sqrt {a+a \sin (c+d x)}}{(e \cos (c+d x))^{5/2}} \, dx}{195 a^3}\\ &=-\frac {2}{13 d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{5/2}}-\frac {16}{117 a d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{3/2}}-\frac {32}{195 a^2 d e (e \cos (c+d x))^{3/2} \sqrt {a+a \sin (c+d x)}}-\frac {128 \sqrt {a+a \sin (c+d x)}}{195 a^3 d e (e \cos (c+d x))^{3/2}}+\frac {128 \int \frac {(a+a \sin (c+d x))^{3/2}}{(e \cos (c+d x))^{5/2}} \, dx}{195 a^4}\\ &=-\frac {2}{13 d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{5/2}}-\frac {16}{117 a d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{3/2}}-\frac {32}{195 a^2 d e (e \cos (c+d x))^{3/2} \sqrt {a+a \sin (c+d x)}}-\frac {128 \sqrt {a+a \sin (c+d x)}}{195 a^3 d e (e \cos (c+d x))^{3/2}}+\frac {256 (a+a \sin (c+d x))^{3/2}}{585 a^4 d e (e \cos (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.28, size = 76, normalized size = 0.39 \[ -\frac {2 (-40 \sin (c+d x)+80 \sin (3 (c+d x))+136 \cos (2 (c+d x))-16 \cos (4 (c+d x))+77)}{585 d e (a (\sin (c+d x)+1))^{5/2} (e \cos (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Cos[c + d*x])^(5/2)*(a + a*Sin[c + d*x])^(5/2)),x]

[Out]

(-2*(77 + 136*Cos[2*(c + d*x)] - 16*Cos[4*(c + d*x)] - 40*Sin[c + d*x] + 80*Sin[3*(c + d*x)]))/(585*d*e*(e*Cos
[c + d*x])^(3/2)*(a*(1 + Sin[c + d*x]))^(5/2))

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 144, normalized size = 0.75 \[ -\frac {2 \, {\left (128 \, \cos \left (d x + c\right )^{4} - 400 \, \cos \left (d x + c\right )^{2} - 40 \, {\left (8 \, \cos \left (d x + c\right )^{2} - 3\right )} \sin \left (d x + c\right ) + 75\right )} \sqrt {e \cos \left (d x + c\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{585 \, {\left (3 \, a^{3} d e^{3} \cos \left (d x + c\right )^{4} - 4 \, a^{3} d e^{3} \cos \left (d x + c\right )^{2} + {\left (a^{3} d e^{3} \cos \left (d x + c\right )^{4} - 4 \, a^{3} d e^{3} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-2/585*(128*cos(d*x + c)^4 - 400*cos(d*x + c)^2 - 40*(8*cos(d*x + c)^2 - 3)*sin(d*x + c) + 75)*sqrt(e*cos(d*x
+ c))*sqrt(a*sin(d*x + c) + a)/(3*a^3*d*e^3*cos(d*x + c)^4 - 4*a^3*d*e^3*cos(d*x + c)^2 + (a^3*d*e^3*cos(d*x +
 c)^4 - 4*a^3*d*e^3*cos(d*x + c)^2)*sin(d*x + c))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (e \cos \left (d x + c\right )\right )^{\frac {5}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((e*cos(d*x + c))^(5/2)*(a*sin(d*x + c) + a)^(5/2)), x)

________________________________________________________________________________________

maple [A]  time = 0.20, size = 80, normalized size = 0.41 \[ -\frac {2 \left (-128 \left (\cos ^{4}\left (d x +c \right )\right )+320 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+400 \left (\cos ^{2}\left (d x +c \right )\right )-120 \sin \left (d x +c \right )-75\right ) \cos \left (d x +c \right )}{585 d \left (e \cos \left (d x +c \right )\right )^{\frac {5}{2}} \left (a \left (1+\sin \left (d x +c \right )\right )\right )^{\frac {5}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(5/2),x)

[Out]

-2/585/d*(-128*cos(d*x+c)^4+320*cos(d*x+c)^2*sin(d*x+c)+400*cos(d*x+c)^2-120*sin(d*x+c)-75)*cos(d*x+c)/(e*cos(
d*x+c))^(5/2)/(a*(1+sin(d*x+c)))^(5/2)

________________________________________________________________________________________

maxima [B]  time = 0.79, size = 451, normalized size = 2.34 \[ -\frac {2 \, {\left (197 \, \sqrt {a} \sqrt {e} + \frac {400 \, \sqrt {a} \sqrt {e} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {15 \, \sqrt {a} \sqrt {e} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {1760 \, \sqrt {a} \sqrt {e} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {2230 \, \sqrt {a} \sqrt {e} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {2230 \, \sqrt {a} \sqrt {e} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {1760 \, \sqrt {a} \sqrt {e} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {15 \, \sqrt {a} \sqrt {e} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {400 \, \sqrt {a} \sqrt {e} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} - \frac {197 \, \sqrt {a} \sqrt {e} \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{5}}{585 \, {\left (a^{3} e^{3} + \frac {5 \, a^{3} e^{3} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {10 \, a^{3} e^{3} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {10 \, a^{3} e^{3} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {5 \, a^{3} e^{3} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} + \frac {a^{3} e^{3} \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}}\right )} d {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {15}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

-2/585*(197*sqrt(a)*sqrt(e) + 400*sqrt(a)*sqrt(e)*sin(d*x + c)/(cos(d*x + c) + 1) + 15*sqrt(a)*sqrt(e)*sin(d*x
 + c)^2/(cos(d*x + c) + 1)^2 - 1760*sqrt(a)*sqrt(e)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 2230*sqrt(a)*sqrt(e)
*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 2230*sqrt(a)*sqrt(e)*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 1760*sqrt(a)
*sqrt(e)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 - 15*sqrt(a)*sqrt(e)*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 - 400*sq
rt(a)*sqrt(e)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9 - 197*sqrt(a)*sqrt(e)*sin(d*x + c)^10/(cos(d*x + c) + 1)^10)
*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^5/((a^3*e^3 + 5*a^3*e^3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 10*a^
3*e^3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 10*a^3*e^3*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 5*a^3*e^3*sin(d*x
 + c)^8/(cos(d*x + c) + 1)^8 + a^3*e^3*sin(d*x + c)^10/(cos(d*x + c) + 1)^10)*d*(sin(d*x + c)/(cos(d*x + c) +
1) + 1)^(15/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2))

________________________________________________________________________________________

mupad [B]  time = 11.54, size = 379, normalized size = 1.96 \[ -\frac {\sqrt {a+a\,\sin \left (c+d\,x\right )}\,\left (\frac {{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,2464{}\mathrm {i}}{585\,a^3\,d\,e^2}+\frac {{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\cos \left (2\,c+2\,d\,x\right )\,4352{}\mathrm {i}}{585\,a^3\,d\,e^2}-\frac {{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\cos \left (4\,c+4\,d\,x\right )\,512{}\mathrm {i}}{585\,a^3\,d\,e^2}+\frac {{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\sin \left (3\,c+3\,d\,x\right )\,512{}\mathrm {i}}{117\,a^3\,d\,e^2}-\frac {{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\sin \left (c+d\,x\right )\,256{}\mathrm {i}}{117\,a^3\,d\,e^2}\right )}{\cos \left (c+d\,x\right )\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\sqrt {e\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,28{}\mathrm {i}-{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\cos \left (3\,c+3\,d\,x\right )\,\sqrt {e\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,12{}\mathrm {i}+{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\sin \left (2\,c+2\,d\,x\right )\,\sqrt {e\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,28{}\mathrm {i}-{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\sin \left (4\,c+4\,d\,x\right )\,\sqrt {e\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,2{}\mathrm {i}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*cos(c + d*x))^(5/2)*(a + a*sin(c + d*x))^(5/2)),x)

[Out]

-((a + a*sin(c + d*x))^(1/2)*((exp(c*4i + d*x*4i)*2464i)/(585*a^3*d*e^2) + (exp(c*4i + d*x*4i)*cos(2*c + 2*d*x
)*4352i)/(585*a^3*d*e^2) - (exp(c*4i + d*x*4i)*cos(4*c + 4*d*x)*512i)/(585*a^3*d*e^2) + (exp(c*4i + d*x*4i)*si
n(3*c + 3*d*x)*512i)/(117*a^3*d*e^2) - (exp(c*4i + d*x*4i)*sin(c + d*x)*256i)/(117*a^3*d*e^2)))/(cos(c + d*x)*
exp(c*4i + d*x*4i)*(e*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*28i - exp(c*4i + d*x*4i)*cos(3*c
+ 3*d*x)*(e*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*12i + exp(c*4i + d*x*4i)*sin(2*c + 2*d*x)*(
e*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*28i - exp(c*4i + d*x*4i)*sin(4*c + 4*d*x)*(e*(exp(- c
*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*2i)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))**(5/2)/(a+a*sin(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________