3.205 \(\int (e \cos (c+d x))^{5/2} (a+a \sin (c+d x))^2 \, dx\)

Optimal. Leaf size=137 \[ \frac {22 a^2 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{15 d \sqrt {\cos (c+d x)}}-\frac {22 a^2 (e \cos (c+d x))^{7/2}}{63 d e}-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{7/2}}{9 d e}+\frac {22 a^2 e \sin (c+d x) (e \cos (c+d x))^{3/2}}{45 d} \]

[Out]

-22/63*a^2*(e*cos(d*x+c))^(7/2)/d/e+22/45*a^2*e*(e*cos(d*x+c))^(3/2)*sin(d*x+c)/d-2/9*(e*cos(d*x+c))^(7/2)*(a^
2+a^2*sin(d*x+c))/d/e+22/15*a^2*e^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*
c),2^(1/2))*(e*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2678, 2669, 2635, 2640, 2639} \[ \frac {22 a^2 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{15 d \sqrt {\cos (c+d x)}}-\frac {22 a^2 (e \cos (c+d x))^{7/2}}{63 d e}-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{7/2}}{9 d e}+\frac {22 a^2 e \sin (c+d x) (e \cos (c+d x))^{3/2}}{45 d} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^(5/2)*(a + a*Sin[c + d*x])^2,x]

[Out]

(-22*a^2*(e*Cos[c + d*x])^(7/2))/(63*d*e) + (22*a^2*e^2*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(15*d*
Sqrt[Cos[c + d*x]]) + (22*a^2*e*(e*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(45*d) - (2*(e*Cos[c + d*x])^(7/2)*(a^2 +
 a^2*Sin[c + d*x]))/(9*d*e)

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2669

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b*(g*Cos[
e + f*x])^(p + 1))/(f*g*(p + 1)), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x]
&& (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rule 2678

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(b*(g
*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1))/(f*g*(m + p)), x] + Dist[(a*(2*m + p - 1))/(m + p), Int[(
g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0]
 && GtQ[m, 0] && NeQ[m + p, 0] && IntegersQ[2*m, 2*p]

Rubi steps

\begin {align*} \int (e \cos (c+d x))^{5/2} (a+a \sin (c+d x))^2 \, dx &=-\frac {2 (e \cos (c+d x))^{7/2} \left (a^2+a^2 \sin (c+d x)\right )}{9 d e}+\frac {1}{9} (11 a) \int (e \cos (c+d x))^{5/2} (a+a \sin (c+d x)) \, dx\\ &=-\frac {22 a^2 (e \cos (c+d x))^{7/2}}{63 d e}-\frac {2 (e \cos (c+d x))^{7/2} \left (a^2+a^2 \sin (c+d x)\right )}{9 d e}+\frac {1}{9} \left (11 a^2\right ) \int (e \cos (c+d x))^{5/2} \, dx\\ &=-\frac {22 a^2 (e \cos (c+d x))^{7/2}}{63 d e}+\frac {22 a^2 e (e \cos (c+d x))^{3/2} \sin (c+d x)}{45 d}-\frac {2 (e \cos (c+d x))^{7/2} \left (a^2+a^2 \sin (c+d x)\right )}{9 d e}+\frac {1}{15} \left (11 a^2 e^2\right ) \int \sqrt {e \cos (c+d x)} \, dx\\ &=-\frac {22 a^2 (e \cos (c+d x))^{7/2}}{63 d e}+\frac {22 a^2 e (e \cos (c+d x))^{3/2} \sin (c+d x)}{45 d}-\frac {2 (e \cos (c+d x))^{7/2} \left (a^2+a^2 \sin (c+d x)\right )}{9 d e}+\frac {\left (11 a^2 e^2 \sqrt {e \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{15 \sqrt {\cos (c+d x)}}\\ &=-\frac {22 a^2 (e \cos (c+d x))^{7/2}}{63 d e}+\frac {22 a^2 e^2 \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d \sqrt {\cos (c+d x)}}+\frac {22 a^2 e (e \cos (c+d x))^{3/2} \sin (c+d x)}{45 d}-\frac {2 (e \cos (c+d x))^{7/2} \left (a^2+a^2 \sin (c+d x)\right )}{9 d e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.12, size = 66, normalized size = 0.48 \[ -\frac {16\ 2^{3/4} a^2 (e \cos (c+d x))^{7/2} \, _2F_1\left (-\frac {11}{4},\frac {7}{4};\frac {11}{4};\frac {1}{2} (1-\sin (c+d x))\right )}{7 d e (\sin (c+d x)+1)^{7/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Cos[c + d*x])^(5/2)*(a + a*Sin[c + d*x])^2,x]

[Out]

(-16*2^(3/4)*a^2*(e*Cos[c + d*x])^(7/2)*Hypergeometric2F1[-11/4, 7/4, 11/4, (1 - Sin[c + d*x])/2])/(7*d*e*(1 +
 Sin[c + d*x])^(7/4))

________________________________________________________________________________________

fricas [F]  time = 0.91, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-{\left (a^{2} e^{2} \cos \left (d x + c\right )^{4} - 2 \, a^{2} e^{2} \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) - 2 \, a^{2} e^{2} \cos \left (d x + c\right )^{2}\right )} \sqrt {e \cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(5/2)*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(-(a^2*e^2*cos(d*x + c)^4 - 2*a^2*e^2*cos(d*x + c)^2*sin(d*x + c) - 2*a^2*e^2*cos(d*x + c)^2)*sqrt(e*c
os(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (e \cos \left (d x + c\right )\right )^{\frac {5}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(5/2)*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((e*cos(d*x + c))^(5/2)*(a*sin(d*x + c) + a)^2, x)

________________________________________________________________________________________

maple [A]  time = 0.86, size = 260, normalized size = 1.90 \[ \frac {2 a^{2} e^{3} \left (-1120 \left (\sin ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2240 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1440 \left (\sin ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1064 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2880 \left (\sin ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-56 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2160 \left (\sin ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+231 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}+84 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+720 \left (\sin ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-90 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{315 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^(5/2)*(a+a*sin(d*x+c))^2,x)

[Out]

2/315/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*a^2*e^3*(-1120*sin(1/2*d*x+1/2*c)^10*cos(1/2*d*x+
1/2*c)+2240*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8-1440*sin(1/2*d*x+1/2*c)^9-1064*sin(1/2*d*x+1/2*c)^6*cos(1/
2*d*x+1/2*c)+2880*sin(1/2*d*x+1/2*c)^7-56*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2160*sin(1/2*d*x+1/2*c)^5+23
1*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)+84*sin(1
/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+720*sin(1/2*d*x+1/2*c)^3-90*sin(1/2*d*x+1/2*c))/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (e \cos \left (d x + c\right )\right )^{\frac {5}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(5/2)*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((e*cos(d*x + c))^(5/2)*(a*sin(d*x + c) + a)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (e\,\cos \left (c+d\,x\right )\right )}^{5/2}\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^2 \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(c + d*x))^(5/2)*(a + a*sin(c + d*x))^2,x)

[Out]

int((e*cos(c + d*x))^(5/2)*(a + a*sin(c + d*x))^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**(5/2)*(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________