3.254 \(\int \frac {1}{a x+\frac {b x}{\log (c x^n)}} \, dx\)

Optimal. Leaf size=27 \[ \frac {\log (x)}{a}-\frac {b \log \left (a \log \left (c x^n\right )+b\right )}{a^2 n} \]

[Out]

ln(x)/a-b*ln(b+a*ln(c*x^n))/a^2/n

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 1, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {43} \[ \frac {\log (x)}{a}-\frac {b \log \left (a \log \left (c x^n\right )+b\right )}{a^2 n} \]

Antiderivative was successfully verified.

[In]

Int[(a*x + (b*x)/Log[c*x^n])^(-1),x]

[Out]

Log[x]/a - (b*Log[b + a*Log[c*x^n]])/(a^2*n)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int \frac {1}{a x+\frac {b x}{\log \left (c x^n\right )}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x}{b+a x} \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {1}{a}-\frac {b}{a (b+a x)}\right ) \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=\frac {\log (x)}{a}-\frac {b \log \left (b+a \log \left (c x^n\right )\right )}{a^2 n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 34, normalized size = 1.26 \[ \frac {\log \left (c x^n\right )}{a n}-\frac {b \log \left (a \log \left (c x^n\right )+b\right )}{a^2 n} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*x + (b*x)/Log[c*x^n])^(-1),x]

[Out]

Log[c*x^n]/(a*n) - (b*Log[b + a*Log[c*x^n]])/(a^2*n)

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 28, normalized size = 1.04 \[ \frac {a n \log \relax (x) - b \log \left (a n \log \relax (x) + a \log \relax (c) + b\right )}{a^{2} n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+b*x/log(c*x^n)),x, algorithm="fricas")

[Out]

(a*n*log(x) - b*log(a*n*log(x) + a*log(c) + b))/(a^2*n)

________________________________________________________________________________________

giac [A]  time = 0.17, size = 53, normalized size = 1.96 \[ \frac {\log \relax (x)}{a} - \frac {b \log \left (\frac {1}{4} \, {\left (\pi a n {\left (\mathrm {sgn}\relax (x) - 1\right )} + \pi a {\left (\mathrm {sgn}\relax (c) - 1\right )}\right )}^{2} + {\left (a n \log \left ({\left | x \right |}\right ) + a \log \left ({\left | c \right |}\right ) + b\right )}^{2}\right )}{2 \, a^{2} n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+b*x/log(c*x^n)),x, algorithm="giac")

[Out]

log(x)/a - 1/2*b*log(1/4*(pi*a*n*(sgn(x) - 1) + pi*a*(sgn(c) - 1))^2 + (a*n*log(abs(x)) + a*log(abs(c)) + b)^2
)/(a^2*n)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 35, normalized size = 1.30 \[ \frac {\ln \left (c \,x^{n}\right )}{a n}-\frac {b \ln \left (a \ln \left (c \,x^{n}\right )+b \right )}{a^{2} n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x+b*x/ln(c*x^n)),x)

[Out]

1/n*ln(c*x^n)/a-b*ln(b+a*ln(c*x^n))/a^2/n

________________________________________________________________________________________

maxima [A]  time = 0.70, size = 33, normalized size = 1.22 \[ \frac {\log \relax (x)}{a} - \frac {b \log \left (\frac {a \log \relax (c) + a \log \left (x^{n}\right ) + b}{a}\right )}{a^{2} n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+b*x/log(c*x^n)),x, algorithm="maxima")

[Out]

log(x)/a - b*log((a*log(c) + a*log(x^n) + b)/a)/(a^2*n)

________________________________________________________________________________________

mupad [B]  time = 0.36, size = 27, normalized size = 1.00 \[ \frac {\ln \relax (x)}{a}-\frac {b\,\ln \left (b+a\,\ln \left (c\,x^n\right )\right )}{a^2\,n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x + (b*x)/log(c*x^n)),x)

[Out]

log(x)/a - (b*log(b + a*log(c*x^n)))/(a^2*n)

________________________________________________________________________________________

sympy [A]  time = 2.70, size = 99, normalized size = 3.67 \[ \begin {cases} \frac {\log {\relax (c )} \log {\relax (x )}}{b} & \text {for}\: a = 0 \wedge n = 0 \\\frac {\log {\relax (c )} \log {\relax (x )}}{a \log {\relax (c )} + b} & \text {for}\: n = 0 \\\frac {\begin {cases} \frac {\log {\left (c x^{n} \right )}^{2}}{2 n} & \text {for}\: \left |{c x^{n}}\right | < 1 \\\frac {\log {\left (\frac {x^{- n}}{c} \right )}^{2}}{2 n} & \text {for}\: \frac {1}{\left |{c x^{n}}\right |} < 1 \\\frac {{G_{3, 3}^{3, 0}\left (\begin {matrix} & 1, 1, 1 \\0, 0, 0 & \end {matrix} \middle | {c x^{n}} \right )}}{n} + \frac {{G_{3, 3}^{0, 3}\left (\begin {matrix} 1, 1, 1 & \\ & 0, 0, 0 \end {matrix} \middle | {c x^{n}} \right )}}{n} & \text {otherwise} \end {cases}}{b} & \text {for}\: a = 0 \\\frac {\log {\relax (x )}}{a} - \frac {b \log {\left (n \log {\relax (x )} + \log {\relax (c )} + \frac {b}{a} \right )}}{a^{2} n} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+b*x/ln(c*x**n)),x)

[Out]

Piecewise((log(c)*log(x)/b, Eq(a, 0) & Eq(n, 0)), (log(c)*log(x)/(a*log(c) + b), Eq(n, 0)), (Piecewise((log(c*
x**n)**2/(2*n), Abs(c*x**n) < 1), (log(x**(-n)/c)**2/(2*n), 1/Abs(c*x**n) < 1), (meijerg(((), (1, 1, 1)), ((0,
 0, 0), ()), c*x**n)/n + meijerg(((1, 1, 1), ()), ((), (0, 0, 0)), c*x**n)/n, True))/b, Eq(a, 0)), (log(x)/a -
 b*log(n*log(x) + log(c) + b/a)/(a**2*n), True))

________________________________________________________________________________________