3.937 \(\int \frac {x}{1+\sqrt {x}+x} \, dx\)

Optimal. Leaf size=32 \[ x-2 \sqrt {x}+\frac {4 \tan ^{-1}\left (\frac {2 \sqrt {x}+1}{\sqrt {3}}\right )}{\sqrt {3}} \]

[Out]

x+4/3*arctan(1/3*(1+2*x^(1/2))*3^(1/2))*3^(1/2)-2*x^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {1357, 701, 618, 204} \[ x-2 \sqrt {x}+\frac {4 \tan ^{-1}\left (\frac {2 \sqrt {x}+1}{\sqrt {3}}\right )}{\sqrt {3}} \]

Antiderivative was successfully verified.

[In]

Int[x/(1 + Sqrt[x] + x),x]

[Out]

-2*Sqrt[x] + x + (4*ArcTan[(1 + 2*Sqrt[x])/Sqrt[3]])/Sqrt[3]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 701

Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[PolynomialDivide[(d + e*x)
^m, a + b*x + c*x^2, x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2,
0] && NeQ[2*c*d - b*e, 0] && IGtQ[m, 1] && (NeQ[d, 0] || GtQ[m, 2])

Rule 1357

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x}{1+\sqrt {x}+x} \, dx &=2 \operatorname {Subst}\left (\int \frac {x^3}{1+x+x^2} \, dx,x,\sqrt {x}\right )\\ &=2 \operatorname {Subst}\left (\int \left (-1+x+\frac {1}{1+x+x^2}\right ) \, dx,x,\sqrt {x}\right )\\ &=-2 \sqrt {x}+x+2 \operatorname {Subst}\left (\int \frac {1}{1+x+x^2} \, dx,x,\sqrt {x}\right )\\ &=-2 \sqrt {x}+x-4 \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 \sqrt {x}\right )\\ &=-2 \sqrt {x}+x+\frac {4 \tan ^{-1}\left (\frac {1+2 \sqrt {x}}{\sqrt {3}}\right )}{\sqrt {3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 32, normalized size = 1.00 \[ x-2 \sqrt {x}+\frac {4 \tan ^{-1}\left (\frac {2 \sqrt {x}+1}{\sqrt {3}}\right )}{\sqrt {3}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(1 + Sqrt[x] + x),x]

[Out]

-2*Sqrt[x] + x + (4*ArcTan[(1 + 2*Sqrt[x])/Sqrt[3]])/Sqrt[3]

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 27, normalized size = 0.84 \[ \frac {4}{3} \, \sqrt {3} \arctan \left (\frac {2}{3} \, \sqrt {3} \sqrt {x} + \frac {1}{3} \, \sqrt {3}\right ) + x - 2 \, \sqrt {x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1+x+x^(1/2)),x, algorithm="fricas")

[Out]

4/3*sqrt(3)*arctan(2/3*sqrt(3)*sqrt(x) + 1/3*sqrt(3)) + x - 2*sqrt(x)

________________________________________________________________________________________

giac [A]  time = 0.36, size = 25, normalized size = 0.78 \[ \frac {4}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, \sqrt {x} + 1\right )}\right ) + x - 2 \, \sqrt {x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1+x+x^(1/2)),x, algorithm="giac")

[Out]

4/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*sqrt(x) + 1)) + x - 2*sqrt(x)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 26, normalized size = 0.81 \[ x +\frac {4 \sqrt {3}\, \arctan \left (\frac {\left (2 \sqrt {x}+1\right ) \sqrt {3}}{3}\right )}{3}-2 \sqrt {x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(x+x^(1/2)+1),x)

[Out]

x+4/3*3^(1/2)*arctan(1/3*(2*x^(1/2)+1)*3^(1/2))-2*x^(1/2)

________________________________________________________________________________________

maxima [A]  time = 2.13, size = 25, normalized size = 0.78 \[ \frac {4}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, \sqrt {x} + 1\right )}\right ) + x - 2 \, \sqrt {x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1+x+x^(1/2)),x, algorithm="maxima")

[Out]

4/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*sqrt(x) + 1)) + x - 2*sqrt(x)

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 27, normalized size = 0.84 \[ x+\frac {4\,\sqrt {3}\,\mathrm {atan}\left (\frac {\sqrt {3}}{3}+\frac {2\,\sqrt {3}\,\sqrt {x}}{3}\right )}{3}-2\,\sqrt {x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(x + x^(1/2) + 1),x)

[Out]

x + (4*3^(1/2)*atan(3^(1/2)/3 + (2*3^(1/2)*x^(1/2))/3))/3 - 2*x^(1/2)

________________________________________________________________________________________

sympy [A]  time = 0.23, size = 37, normalized size = 1.16 \[ - 2 \sqrt {x} + x + \frac {4 \sqrt {3} \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt {x}}{3} + \frac {\sqrt {3}}{3} \right )}}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1+x+x**(1/2)),x)

[Out]

-2*sqrt(x) + x + 4*sqrt(3)*atan(2*sqrt(3)*sqrt(x)/3 + sqrt(3)/3)/3

________________________________________________________________________________________