3.896 \(\int (1+\frac {2 x}{1+x^2})^{3/2} \, dx\)

Optimal. Leaf size=90 \[ -\left ((1-x) \sqrt {\frac {2 x}{x^2+1}+1} (x+1)\right )-\frac {x \left (x^2+1\right ) \sqrt {\frac {2 x}{x^2+1}+1}}{x+1}+\frac {3 \sqrt {x^2+1} \sqrt {\frac {2 x}{x^2+1}+1} \sinh ^{-1}(x)}{x+1} \]

[Out]

-(1-x)*(1+x)*(1+2*x/(x^2+1))^(1/2)-x*(x^2+1)*(1+2*x/(x^2+1))^(1/2)/(1+x)+3*arcsinh(x)*(x^2+1)^(1/2)*(1+2*x/(x^
2+1))^(1/2)/(1+x)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {6723, 970, 739, 517, 388, 215} \[ -(1-x) \sqrt {\frac {2 x}{x^2+1}+1} (x+1)-\frac {x \left (x^2+1\right ) \sqrt {\frac {2 x}{x^2+1}+1}}{x+1}+\frac {3 \sqrt {x^2+1} \sqrt {\frac {2 x}{x^2+1}+1} \sinh ^{-1}(x)}{x+1} \]

Antiderivative was successfully verified.

[In]

Int[(1 + (2*x)/(1 + x^2))^(3/2),x]

[Out]

-((1 - x)*(1 + x)*Sqrt[1 + (2*x)/(1 + x^2)]) - (x*(1 + x^2)*Sqrt[1 + (2*x)/(1 + x^2)])/(1 + x) + (3*Sqrt[1 + x
^2]*Sqrt[1 + (2*x)/(1 + x^2)]*ArcSinh[x])/(1 + x)

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 517

Int[(u_.)*((c_) + (d_.)*(x_)^(n_.))^(q_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^
(p_.), x_Symbol] :> Int[u*(a1*a2 + b1*b2*x^n)^p*(c + d*x^n)^q, x] /; FreeQ[{a1, b1, a2, b2, c, d, n, p, q}, x]
 && EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && (IntegerQ[p] || (GtQ[a1, 0] && GtQ[a2, 0]))

Rule 739

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(a*e - c*d*x)*(a
 + c*x^2)^(p + 1))/(2*a*c*(p + 1)), x] + Dist[1/((p + 1)*(-2*a*c)), Int[(d + e*x)^(m - 2)*Simp[a*e^2*(m - 1) -
 c*d^2*(2*p + 3) - d*c*e*(m + 2*p + 2)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^
2 + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 970

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_.), x_Symbol] :> Dist[(a + b*x + c*x^2)^F
racPart[p]/((4*c)^IntPart[p]*(b + 2*c*x)^(2*FracPart[p])), Int[(b + 2*c*x)^(2*p)*(d + f*x^2)^q, x], x] /; Free
Q[{a, b, c, d, f, p, q}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p]

Rule 6723

Int[(u_.)*((a_.) + (b_.)*(v_)^(n_)*(x_)^(m_.))^(p_), x_Symbol] :> Dist[(a + b*x^m*v^n)^FracPart[p]/(v^(n*FracP
art[p])*(b*x^m + a/v^n)^FracPart[p]), Int[u*v^(n*p)*(b*x^m + a/v^n)^p, x], x] /; FreeQ[{a, b, m, p}, x] &&  !I
ntegerQ[p] && ILtQ[n, 0] && BinomialQ[v, x]

Rubi steps

\begin {align*} \int \left (1+\frac {2 x}{1+x^2}\right )^{3/2} \, dx &=\frac {\left (\sqrt {1+x^2} \sqrt {1+\frac {2 x}{1+x^2}}\right ) \int \frac {\left (1+2 x+x^2\right )^{3/2}}{\left (1+x^2\right )^{3/2}} \, dx}{\sqrt {1+2 x+x^2}}\\ &=\frac {\left (\sqrt {1+x^2} \sqrt {1+\frac {2 x}{1+x^2}}\right ) \int \frac {(2+2 x)^3}{\left (1+x^2\right )^{3/2}} \, dx}{4 (2+2 x)}\\ &=-(1-x) (1+x) \sqrt {1+\frac {2 x}{1+x^2}}+\frac {\left (\sqrt {1+x^2} \sqrt {1+\frac {2 x}{1+x^2}}\right ) \int \frac {(8-8 x) (2+2 x)}{\sqrt {1+x^2}} \, dx}{4 (2+2 x)}\\ &=-(1-x) (1+x) \sqrt {1+\frac {2 x}{1+x^2}}+\frac {\left (\sqrt {1+x^2} \sqrt {1+\frac {2 x}{1+x^2}}\right ) \int \frac {16-16 x^2}{\sqrt {1+x^2}} \, dx}{4 (2+2 x)}\\ &=-(1-x) (1+x) \sqrt {1+\frac {2 x}{1+x^2}}-\frac {x \left (1+x^2\right ) \sqrt {1+\frac {2 x}{1+x^2}}}{1+x}+\frac {\left (6 \sqrt {1+x^2} \sqrt {1+\frac {2 x}{1+x^2}}\right ) \int \frac {1}{\sqrt {1+x^2}} \, dx}{2+2 x}\\ &=-(1-x) (1+x) \sqrt {1+\frac {2 x}{1+x^2}}-\frac {x \left (1+x^2\right ) \sqrt {1+\frac {2 x}{1+x^2}}}{1+x}+\frac {3 \sqrt {1+x^2} \sqrt {1+\frac {2 x}{1+x^2}} \sinh ^{-1}(x)}{1+x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 44, normalized size = 0.49 \[ \frac {\sqrt {\frac {(x+1)^2}{x^2+1}} \left (x^2+3 \sqrt {x^2+1} \sinh ^{-1}(x)-2 x-1\right )}{x+1} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + (2*x)/(1 + x^2))^(3/2),x]

[Out]

(Sqrt[(1 + x)^2/(1 + x^2)]*(-1 - 2*x + x^2 + 3*Sqrt[1 + x^2]*ArcSinh[x]))/(1 + x)

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 83, normalized size = 0.92 \[ -\frac {3 \, {\left (x + 1\right )} \log \left (-\frac {x^{2} - {\left (x^{2} + 1\right )} \sqrt {\frac {x^{2} + 2 \, x + 1}{x^{2} + 1}} + x}{x + 1}\right ) - {\left (x^{2} - 2 \, x - 1\right )} \sqrt {\frac {x^{2} + 2 \, x + 1}{x^{2} + 1}} + 2 \, x + 2}{x + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+2*x/(x^2+1))^(3/2),x, algorithm="fricas")

[Out]

-(3*(x + 1)*log(-(x^2 - (x^2 + 1)*sqrt((x^2 + 2*x + 1)/(x^2 + 1)) + x)/(x + 1)) - (x^2 - 2*x - 1)*sqrt((x^2 +
2*x + 1)/(x^2 + 1)) + 2*x + 2)/(x + 1)

________________________________________________________________________________________

giac [A]  time = 0.37, size = 67, normalized size = 0.74 \[ -{\left (\sqrt {2} - 3 \, \log \left (\sqrt {2} + 1\right )\right )} \mathrm {sgn}\left (x + 1\right ) - 3 \, \log \left (-x + \sqrt {x^{2} + 1}\right ) \mathrm {sgn}\left (x + 1\right ) + \frac {{\left (x \mathrm {sgn}\left (x + 1\right ) - 2 \, \mathrm {sgn}\left (x + 1\right )\right )} x - \mathrm {sgn}\left (x + 1\right )}{\sqrt {x^{2} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+2*x/(x^2+1))^(3/2),x, algorithm="giac")

[Out]

-(sqrt(2) - 3*log(sqrt(2) + 1))*sgn(x + 1) - 3*log(-x + sqrt(x^2 + 1))*sgn(x + 1) + ((x*sgn(x + 1) - 2*sgn(x +
 1))*x - sgn(x + 1))/sqrt(x^2 + 1)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 49, normalized size = 0.54 \[ \frac {\left (\frac {x^{2}+2 x +1}{x^{2}+1}\right )^{\frac {3}{2}} \left (x^{2}+1\right ) \left (x^{2}-2 x +3 \sqrt {x^{2}+1}\, \arcsinh \relax (x )-1\right )}{\left (x +1\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+2/(x^2+1)*x)^(3/2),x)

[Out]

((x^2+2*x+1)/(x^2+1))^(3/2)/(x+1)^3*(x^2+1)*(3*arcsinh(x)*(x^2+1)^(1/2)+x^2-2*x-1)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (\frac {2 \, x}{x^{2} + 1} + 1\right )}^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+2*x/(x^2+1))^(3/2),x, algorithm="maxima")

[Out]

integrate((2*x/(x^2 + 1) + 1)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (\frac {2\,x}{x^2+1}+1\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x)/(x^2 + 1) + 1)^(3/2),x)

[Out]

int(((2*x)/(x^2 + 1) + 1)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (\frac {2 x}{x^{2} + 1} + 1\right )^{\frac {3}{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+2*x/(x**2+1))**(3/2),x)

[Out]

Integral((2*x/(x**2 + 1) + 1)**(3/2), x)

________________________________________________________________________________________