3.892 \(\int \frac {\sqrt {-2 x^2+x^4}}{(-1+x^2) (2+x^2)} \, dx\)

Optimal. Leaf size=83 \[ \frac {2 \sqrt {x^4-2 x^2} \tan ^{-1}\left (\frac {\sqrt {x^2-2}}{2}\right )}{3 x \sqrt {x^2-2}}-\frac {\sqrt {x^4-2 x^2} \tan ^{-1}\left (\sqrt {x^2-2}\right )}{3 x \sqrt {x^2-2}} \]

[Out]

2/3*arctan(1/2*(x^2-2)^(1/2))*(x^4-2*x^2)^(1/2)/x/(x^2-2)^(1/2)-1/3*arctan((x^2-2)^(1/2))*(x^4-2*x^2)^(1/2)/x/
(x^2-2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {2056, 571, 83, 63, 203} \[ \frac {2 \sqrt {x^4-2 x^2} \tan ^{-1}\left (\frac {\sqrt {x^2-2}}{2}\right )}{3 x \sqrt {x^2-2}}-\frac {\sqrt {x^4-2 x^2} \tan ^{-1}\left (\sqrt {x^2-2}\right )}{3 x \sqrt {x^2-2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[-2*x^2 + x^4]/((-1 + x^2)*(2 + x^2)),x]

[Out]

(2*Sqrt[-2*x^2 + x^4]*ArcTan[Sqrt[-2 + x^2]/2])/(3*x*Sqrt[-2 + x^2]) - (Sqrt[-2*x^2 + x^4]*ArcTan[Sqrt[-2 + x^
2]])/(3*x*Sqrt[-2 + x^2])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 83

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[(b*e - a*f)/(b*c
 - a*d), Int[(e + f*x)^(p - 1)/(a + b*x), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[(e + f*x)^(p - 1)/(c + d*
x), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[0, p, 1]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 571

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n], x] /; FreeQ[{a, b, c, d, e,
f, m, n, p, q, r}, x] && EqQ[m - n + 1, 0]

Rule 2056

Int[(u_.)*(P_)^(p_.), x_Symbol] :> With[{m = MinimumMonomialExponent[P, x]}, Dist[P^FracPart[p]/(x^(m*FracPart
[p])*Distrib[1/x^m, P]^FracPart[p]), Int[u*x^(m*p)*Distrib[1/x^m, P]^p, x], x]] /; FreeQ[p, x] &&  !IntegerQ[p
] && SumQ[P] && EveryQ[BinomialQ[#1, x] & , P] &&  !PolyQ[P, x, 2]

Rubi steps

\begin {align*} \int \frac {\sqrt {-2 x^2+x^4}}{\left (-1+x^2\right ) \left (2+x^2\right )} \, dx &=\frac {\sqrt {-2 x^2+x^4} \int \frac {x \sqrt {-2+x^2}}{\left (-1+x^2\right ) \left (2+x^2\right )} \, dx}{x \sqrt {-2+x^2}}\\ &=\frac {\sqrt {-2 x^2+x^4} \operatorname {Subst}\left (\int \frac {\sqrt {-2+x}}{(-1+x) (2+x)} \, dx,x,x^2\right )}{2 x \sqrt {-2+x^2}}\\ &=-\frac {\sqrt {-2 x^2+x^4} \operatorname {Subst}\left (\int \frac {1}{\sqrt {-2+x} (-1+x)} \, dx,x,x^2\right )}{6 x \sqrt {-2+x^2}}+\frac {\left (2 \sqrt {-2 x^2+x^4}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {-2+x} (2+x)} \, dx,x,x^2\right )}{3 x \sqrt {-2+x^2}}\\ &=-\frac {\sqrt {-2 x^2+x^4} \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {-2+x^2}\right )}{3 x \sqrt {-2+x^2}}+\frac {\left (4 \sqrt {-2 x^2+x^4}\right ) \operatorname {Subst}\left (\int \frac {1}{4+x^2} \, dx,x,\sqrt {-2+x^2}\right )}{3 x \sqrt {-2+x^2}}\\ &=\frac {2 \sqrt {-2 x^2+x^4} \tan ^{-1}\left (\frac {1}{2} \sqrt {-2+x^2}\right )}{3 x \sqrt {-2+x^2}}-\frac {\sqrt {-2 x^2+x^4} \tan ^{-1}\left (\sqrt {-2+x^2}\right )}{3 x \sqrt {-2+x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 52, normalized size = 0.63 \[ -\frac {x \sqrt {x^2-2} \left (2 \tan ^{-1}\left (\frac {2}{\sqrt {x^2-2}}\right )+\tan ^{-1}\left (\sqrt {x^2-2}\right )\right )}{3 \sqrt {x^2 \left (x^2-2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[-2*x^2 + x^4]/((-1 + x^2)*(2 + x^2)),x]

[Out]

-1/3*(x*Sqrt[-2 + x^2]*(2*ArcTan[2/Sqrt[-2 + x^2]] + ArcTan[Sqrt[-2 + x^2]]))/Sqrt[x^2*(-2 + x^2)]

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 38, normalized size = 0.46 \[ -\frac {1}{3} \, \arctan \left (\frac {\sqrt {x^{4} - 2 \, x^{2}}}{x}\right ) + \frac {2}{3} \, \arctan \left (\frac {\sqrt {x^{4} - 2 \, x^{2}}}{2 \, x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4-2*x^2)^(1/2)/(x^2-1)/(x^2+2),x, algorithm="fricas")

[Out]

-1/3*arctan(sqrt(x^4 - 2*x^2)/x) + 2/3*arctan(1/2*sqrt(x^4 - 2*x^2)/x)

________________________________________________________________________________________

giac [C]  time = 0.36, size = 46, normalized size = 0.55 \[ \frac {1}{3} \, {\left (\arctan \left (i \, \sqrt {2}\right ) - 2 \, \arctan \left (\frac {1}{2} i \, \sqrt {2}\right )\right )} \mathrm {sgn}\relax (x) + \frac {2}{3} \, \arctan \left (\frac {1}{2} \, \sqrt {x^{2} - 2}\right ) \mathrm {sgn}\relax (x) - \frac {1}{3} \, \arctan \left (\sqrt {x^{2} - 2}\right ) \mathrm {sgn}\relax (x) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4-2*x^2)^(1/2)/(x^2-1)/(x^2+2),x, algorithm="giac")

[Out]

1/3*(arctan(I*sqrt(2)) - 2*arctan(1/2*I*sqrt(2)))*sgn(x) + 2/3*arctan(1/2*sqrt(x^2 - 2))*sgn(x) - 1/3*arctan(s
qrt(x^2 - 2))*sgn(x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 63, normalized size = 0.76 \[ -\frac {\sqrt {x^{4}-2 x^{2}}\, \left (\arctan \left (\frac {x -2}{\sqrt {x^{2}-2}}\right )-\arctan \left (\frac {x +2}{\sqrt {x^{2}-2}}\right )-4 \arctan \left (\frac {\sqrt {x^{2}-2}}{2}\right )\right )}{6 \sqrt {x^{2}-2}\, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4-2*x^2)^(1/2)/(x^2-1)/(x^2+2),x)

[Out]

-1/6*(x^4-2*x^2)^(1/2)*(arctan((x-2)/(x^2-2)^(1/2))-arctan((x+2)/(x^2-2)^(1/2))-4*arctan(1/2*(x^2-2)^(1/2)))/x
/(x^2-2)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {x^{4} - 2 \, x^{2}}}{{\left (x^{2} + 2\right )} {\left (x^{2} - 1\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4-2*x^2)^(1/2)/(x^2-1)/(x^2+2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 - 2*x^2)/((x^2 + 2)*(x^2 - 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {x^4-2\,x^2}}{\left (x^2-1\right )\,\left (x^2+2\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4 - 2*x^2)^(1/2)/((x^2 - 1)*(x^2 + 2)),x)

[Out]

int((x^4 - 2*x^2)^(1/2)/((x^2 - 1)*(x^2 + 2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {x^{2} \left (x^{2} - 2\right )}}{\left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 2\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4-2*x**2)**(1/2)/(x**2-1)/(x**2+2),x)

[Out]

Integral(sqrt(x**2*(x**2 - 2))/((x - 1)*(x + 1)*(x**2 + 2)), x)

________________________________________________________________________________________