3.869 \(\int \frac {\sqrt {1+x^2}}{\sqrt {1-x^4}} \, dx\)

Optimal. Leaf size=2 \[ \sin ^{-1}(x) \]

[Out]

arcsin(x)

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 2, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {26, 216} \[ \sin ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 + x^2]/Sqrt[1 - x^4],x]

[Out]

ArcSin[x]

Rule 26

Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(m_.)*((c_) + (d_.)*(x_)^(j_))^(p_.), x_Symbol] :> Dist[(-(b^2/d))^m, Int[
u/(a - b*x^n)^m, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[j, 2*n] && EqQ[p, -m] && EqQ[b^2*c + a^2*d,
0] && GtQ[a, 0] && LtQ[d, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin {align*} \int \frac {\sqrt {1+x^2}}{\sqrt {1-x^4}} \, dx &=\int \frac {1}{\sqrt {1-x^2}} \, dx\\ &=\sin ^{-1}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.03, size = 32, normalized size = 16.00 \[ -\tan ^{-1}\left (\frac {x \sqrt {x^2+1} \sqrt {1-x^4}}{x^4-1}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 + x^2]/Sqrt[1 - x^4],x]

[Out]

-ArcTan[(x*Sqrt[1 + x^2]*Sqrt[1 - x^4])/(-1 + x^4)]

________________________________________________________________________________________

fricas [B]  time = 0.43, size = 27, normalized size = 13.50 \[ -\arctan \left (\frac {\sqrt {-x^{4} + 1} \sqrt {x^{2} + 1}}{x^{3} + x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)^(1/2)/(-x^4+1)^(1/2),x, algorithm="fricas")

[Out]

-arctan(sqrt(-x^4 + 1)*sqrt(x^2 + 1)/(x^3 + x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {x^{2} + 1}}{\sqrt {-x^{4} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)^(1/2)/(-x^4+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^2 + 1)/sqrt(-x^4 + 1), x)

________________________________________________________________________________________

maple [B]  time = 0.02, size = 29, normalized size = 14.50 \[ \frac {\sqrt {-x^{4}+1}\, \arcsin \relax (x )}{\sqrt {x^{2}+1}\, \sqrt {-x^{2}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2+1)^(1/2)/(-x^4+1)^(1/2),x)

[Out]

1/(x^2+1)^(1/2)*(-x^4+1)^(1/2)/(-x^2+1)^(1/2)*arcsin(x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {x^{2} + 1}}{\sqrt {-x^{4} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)^(1/2)/(-x^4+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^2 + 1)/sqrt(-x^4 + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.50 \[ \int \frac {\sqrt {x^2+1}}{\sqrt {1-x^4}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2 + 1)^(1/2)/(1 - x^4)^(1/2),x)

[Out]

int((x^2 + 1)^(1/2)/(1 - x^4)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {x^{2} + 1}}{\sqrt {- \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2+1)**(1/2)/(-x**4+1)**(1/2),x)

[Out]

Integral(sqrt(x**2 + 1)/sqrt(-(x - 1)*(x + 1)*(x**2 + 1)), x)

________________________________________________________________________________________