3.86 \(\int \frac {e+f x}{(2-x) \sqrt {-1-x^3}} \, dx\)

Optimal. Leaf size=150 \[ \frac {2}{9} (e+2 f) \tan ^{-1}\left (\frac {(x+1)^2}{3 \sqrt {-x^3-1}}\right )+\frac {2 \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} (e-f) F\left (\sin ^{-1}\left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}} \]

[Out]

2/9*(e+2*f)*arctan(1/3*(1+x)^2/(-x^3-1)^(1/2))+2/9*(e-f)*(1+x)*EllipticF((1+x+3^(1/2))/(1+x-3^(1/2)),2*I-I*3^(
1/2))*(1/2*6^(1/2)-1/2*2^(1/2))*((x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)*3^(3/4)/(-x^3-1)^(1/2)/((-1-x)/(1+x-3^(1/2))
^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2139, 219, 2138, 203} \[ \frac {2}{9} (e+2 f) \tan ^{-1}\left (\frac {(x+1)^2}{3 \sqrt {-x^3-1}}\right )+\frac {2 \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} (e-f) F\left (\sin ^{-1}\left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}} \]

Antiderivative was successfully verified.

[In]

Int[(e + f*x)/((2 - x)*Sqrt[-1 - x^3]),x]

[Out]

(2*(e + 2*f)*ArcTan[(1 + x)^2/(3*Sqrt[-1 - x^3])])/9 + (2*Sqrt[2 - Sqrt[3]]*(e - f)*(1 + x)*Sqrt[(1 - x + x^2)
/(1 - Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[
-((1 + x)/(1 - Sqrt[3] + x)^2)]*Sqrt[-1 - x^3])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 219

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 - Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 + Sqrt[3
])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[-((s*(s + r*x))/((1 - S
qrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 2138

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(-2*e)/d, Subst[Int
[1/(9 - a*x^2), x], x, (1 + (f*x)/e)^2/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f,
0] && EqQ[b*c^3 + 8*a*d^3, 0] && EqQ[2*d*e + c*f, 0]

Rule 2139

Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(2*d*e + c*f)/(3*c
*d), Int[1/Sqrt[a + b*x^3], x], x] + Dist[(d*e - c*f)/(3*c*d), Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x]
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && (EqQ[b*c^3 - 4*a*d^3, 0] || EqQ[b*c^3 + 8*a*d^3,
0]) && NeQ[2*d*e + c*f, 0]

Rubi steps

\begin {align*} \int \frac {e+f x}{(2-x) \sqrt {-1-x^3}} \, dx &=\frac {1}{3} (e-f) \int \frac {1}{\sqrt {-1-x^3}} \, dx+\frac {1}{6} (e+2 f) \int \frac {2+2 x}{(2-x) \sqrt {-1-x^3}} \, dx\\ &=\frac {2 \sqrt {2-\sqrt {3}} (e-f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}+\frac {1}{3} (2 (e+2 f)) \operatorname {Subst}\left (\int \frac {1}{9+x^2} \, dx,x,\frac {(1+x)^2}{\sqrt {-1-x^3}}\right )\\ &=\frac {2}{9} (e+2 f) \tan ^{-1}\left (\frac {(1+x)^2}{3 \sqrt {-1-x^3}}\right )+\frac {2 \sqrt {2-\sqrt {3}} (e-f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.20, size = 275, normalized size = 1.83 \[ \frac {2 \sqrt {\frac {2}{3}} \sqrt {-\frac {i (x+1)}{\sqrt {3}-3 i}} \left (2 \sqrt {3} \sqrt {2 i x+\sqrt {3}-i} \sqrt {x^2-x+1} (e+2 f) \Pi \left (\frac {2 \sqrt {3}}{3 i+\sqrt {3}};\sin ^{-1}\left (\frac {\sqrt {2 i x+\sqrt {3}-i}}{\sqrt {2} \sqrt [4]{3}}\right )|\frac {2 \sqrt {3}}{-3 i+\sqrt {3}}\right )-3 i f \sqrt {-2 i x+\sqrt {3}+i} \left (\left (\sqrt {3}-i\right ) x-\sqrt {3}-i\right ) F\left (\sin ^{-1}\left (\frac {\sqrt {2 i x+\sqrt {3}-i}}{\sqrt {2} \sqrt [4]{3}}\right )|\frac {2 \sqrt {3}}{-3 i+\sqrt {3}}\right )\right )}{\left (\sqrt {3}+3 i\right ) \sqrt {2 i x+\sqrt {3}-i} \sqrt {-x^3-1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(e + f*x)/((2 - x)*Sqrt[-1 - x^3]),x]

[Out]

(2*Sqrt[2/3]*Sqrt[((-I)*(1 + x))/(-3*I + Sqrt[3])]*((-3*I)*f*Sqrt[I + Sqrt[3] - (2*I)*x]*(-I - Sqrt[3] + (-I +
 Sqrt[3])*x)*EllipticF[ArcSin[Sqrt[-I + Sqrt[3] + (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])] +
 2*Sqrt[3]*(e + 2*f)*Sqrt[-I + Sqrt[3] + (2*I)*x]*Sqrt[1 - x + x^2]*EllipticPi[(2*Sqrt[3])/(3*I + Sqrt[3]), Ar
cSin[Sqrt[-I + Sqrt[3] + (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])]))/((3*I + Sqrt[3])*Sqrt[-I
 + Sqrt[3] + (2*I)*x]*Sqrt[-1 - x^3])

________________________________________________________________________________________

fricas [F]  time = 0.67, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-x^{3} - 1} {\left (f x + e\right )}}{x^{4} - 2 \, x^{3} + x - 2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2-x)/(-x^3-1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-x^3 - 1)*(f*x + e)/(x^4 - 2*x^3 + x - 2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {f x + e}{\sqrt {-x^{3} - 1} {\left (x - 2\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2-x)/(-x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(f*x + e)/(sqrt(-x^3 - 1)*(x - 2)), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 246, normalized size = 1.64 \[ \frac {2 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, f \EllipticF \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}}+\frac {2 i \left (e +2 f \right ) \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}\, \left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)/(2-x)/(-x^3-1)^(1/2),x)

[Out]

2/3*I*f*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x+1)/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x-1/2+1/2*I*3^(
1/2))*3^(1/2))^(1/2)/(-x^3-1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(
3/2+1/2*I*3^(1/2)))^(1/2))+2/3*I*(e+2*f)*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x+1)/(3/2+1/2*I*3^(
1/2)))^(1/2)*(-I*(x-1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3-1)^(1/2)/(-3/2+1/2*I*3^(1/2))*EllipticPi(1/3*3^(1/
2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(-3/2+1/2*I*3^(1/2)),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2
))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\int \frac {f x + e}{\sqrt {-x^{3} - 1} {\left (x - 2\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2-x)/(-x^3-1)^(1/2),x, algorithm="maxima")

[Out]

-integrate((f*x + e)/(sqrt(-x^3 - 1)*(x - 2)), x)

________________________________________________________________________________________

mupad [B]  time = 2.54, size = 359, normalized size = 2.39 \[ -\frac {2\,f\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3+1}\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {-x^3-1}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}+\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3+1}\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\left (e+2\,f\right )\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6};\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{3\,\sqrt {-x^3-1}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(e + f*x)/((- x^3 - 1)^(1/2)*(x - 2)),x)

[Out]

(2*((3^(1/2)*1i)/2 + 3/2)*(x^3 + 1)^(1/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*(e + 2*f)*
((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticPi((3
^(1/2)*1i)/6 + 1/2, asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/
2)))/(3*(- x^3 - 1)^(1/2)*(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2
)*((3^(1/2)*1i)/2 + 1/2))^(1/2)) - (2*f*((3^(1/2)*1i)/2 + 3/2)*(x^3 + 1)^(1/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3
^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2
+ 3/2))^(1/2)*ellipticF(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2
- 3/2)))/((- x^3 - 1)^(1/2)*(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1
/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \frac {e}{x \sqrt {- x^{3} - 1} - 2 \sqrt {- x^{3} - 1}}\, dx - \int \frac {f x}{x \sqrt {- x^{3} - 1} - 2 \sqrt {- x^{3} - 1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2-x)/(-x**3-1)**(1/2),x)

[Out]

-Integral(e/(x*sqrt(-x**3 - 1) - 2*sqrt(-x**3 - 1)), x) - Integral(f*x/(x*sqrt(-x**3 - 1) - 2*sqrt(-x**3 - 1))
, x)

________________________________________________________________________________________