3.84 \(\int \frac {e+f x}{(2+x) \sqrt {1-x^3}} \, dx\)

Optimal. Leaf size=153 \[ -\frac {2}{9} (e-2 f) \tanh ^{-1}\left (\frac {(1-x)^2}{3 \sqrt {1-x^3}}\right )-\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} (e+f) F\left (\sin ^{-1}\left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}} \]

[Out]

-2/9*(e-2*f)*arctanh(1/3*(1-x)^2/(-x^3+1)^(1/2))-2/9*(e+f)*(1-x)*EllipticF((1-x-3^(1/2))/(1-x+3^(1/2)),I*3^(1/
2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2+x+1)/(1-x+3^(1/2))^2)^(1/2)*3^(3/4)/(-x^3+1)^(1/2)/((1-x)/(1-x+3^(1/2)
)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2139, 218, 2138, 206} \[ -\frac {2}{9} (e-2 f) \tanh ^{-1}\left (\frac {(1-x)^2}{3 \sqrt {1-x^3}}\right )-\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} (e+f) F\left (\sin ^{-1}\left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}} \]

Antiderivative was successfully verified.

[In]

Int[(e + f*x)/((2 + x)*Sqrt[1 - x^3]),x]

[Out]

(-2*(e - 2*f)*ArcTanh[(1 - x)^2/(3*Sqrt[1 - x^3])])/9 - (2*Sqrt[2 + Sqrt[3]]*(e + f)*(1 - x)*Sqrt[(1 + x + x^2
)/(1 + Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] - x)/(1 + Sqrt[3] - x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*Sqrt
[(1 - x)/(1 + Sqrt[3] - x)^2]*Sqrt[1 - x^3])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 2138

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(-2*e)/d, Subst[Int
[1/(9 - a*x^2), x], x, (1 + (f*x)/e)^2/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f,
0] && EqQ[b*c^3 + 8*a*d^3, 0] && EqQ[2*d*e + c*f, 0]

Rule 2139

Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(2*d*e + c*f)/(3*c
*d), Int[1/Sqrt[a + b*x^3], x], x] + Dist[(d*e - c*f)/(3*c*d), Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x]
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && (EqQ[b*c^3 - 4*a*d^3, 0] || EqQ[b*c^3 + 8*a*d^3,
0]) && NeQ[2*d*e + c*f, 0]

Rubi steps

\begin {align*} \int \frac {e+f x}{(2+x) \sqrt {1-x^3}} \, dx &=\frac {1}{6} (e-2 f) \int \frac {2-2 x}{(2+x) \sqrt {1-x^3}} \, dx+\frac {1}{3} (e+f) \int \frac {1}{\sqrt {1-x^3}} \, dx\\ &=-\frac {2 \sqrt {2+\sqrt {3}} (e+f) (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}}-\frac {1}{3} (2 (e-2 f)) \operatorname {Subst}\left (\int \frac {1}{9-x^2} \, dx,x,\frac {(1-x)^2}{\sqrt {1-x^3}}\right )\\ &=-\frac {2}{9} (e-2 f) \tanh ^{-1}\left (\frac {(1-x)^2}{3 \sqrt {1-x^3}}\right )-\frac {2 \sqrt {2+\sqrt {3}} (e+f) (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.29, size = 271, normalized size = 1.77 \[ \frac {2 \sqrt {\frac {2}{3}} \sqrt {\frac {i (x-1)}{\sqrt {3}-3 i}} \left (3 f \sqrt {2 i x+\sqrt {3}+i} \left (i \sqrt {3} x+x+i \sqrt {3}-1\right ) F\left (\sin ^{-1}\left (\frac {\sqrt {-2 i x+\sqrt {3}-i}}{\sqrt {2} \sqrt [4]{3}}\right )|\frac {2 \sqrt {3}}{-3 i+\sqrt {3}}\right )-2 \sqrt {3} \sqrt {-2 i x+\sqrt {3}-i} \sqrt {x^2+x+1} (e-2 f) \Pi \left (\frac {2 \sqrt {3}}{3 i+\sqrt {3}};\sin ^{-1}\left (\frac {\sqrt {-2 i x+\sqrt {3}-i}}{\sqrt {2} \sqrt [4]{3}}\right )|\frac {2 \sqrt {3}}{-3 i+\sqrt {3}}\right )\right )}{\left (\sqrt {3}+3 i\right ) \sqrt {-2 i x+\sqrt {3}-i} \sqrt {1-x^3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(e + f*x)/((2 + x)*Sqrt[1 - x^3]),x]

[Out]

(2*Sqrt[2/3]*Sqrt[(I*(-1 + x))/(-3*I + Sqrt[3])]*(3*f*Sqrt[I + Sqrt[3] + (2*I)*x]*(-1 + I*Sqrt[3] + x + I*Sqrt
[3]*x)*EllipticF[ArcSin[Sqrt[-I + Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])] - 2*Sqr
t[3]*(e - 2*f)*Sqrt[-I + Sqrt[3] - (2*I)*x]*Sqrt[1 + x + x^2]*EllipticPi[(2*Sqrt[3])/(3*I + Sqrt[3]), ArcSin[S
qrt[-I + Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])]))/((3*I + Sqrt[3])*Sqrt[-I + Sqr
t[3] - (2*I)*x]*Sqrt[1 - x^3])

________________________________________________________________________________________

fricas [F]  time = 0.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-x^{3} + 1} {\left (f x + e\right )}}{x^{4} + 2 \, x^{3} - x - 2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2+x)/(-x^3+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-x^3 + 1)*(f*x + e)/(x^4 + 2*x^3 - x - 2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {f x + e}{\sqrt {-x^{3} + 1} {\left (x + 2\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2+x)/(-x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate((f*x + e)/(sqrt(-x^3 + 1)*(x + 2)), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 246, normalized size = 1.61 \[ -\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, f \EllipticF \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}-\frac {2 i \left (e -2 f \right ) \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}\, \left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)/(x+2)/(-x^3+1)^(1/2),x)

[Out]

-2/3*I*f*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x-1)/(-3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3
^(1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)
/(-3/2+1/2*I*3^(1/2)))^(1/2))-2/3*I*(e-2*f)*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x-1)/(-3/2+1/2*I
*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)/(3/2+1/2*I*3^(1/2))*EllipticPi(1/3*3^
(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(3/2+1/2*I*3^(1/2)),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(
1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {f x + e}{\sqrt {-x^{3} + 1} {\left (x + 2\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2+x)/(-x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((f*x + e)/(sqrt(-x^3 + 1)*(x + 2)), x)

________________________________________________________________________________________

mupad [B]  time = 0.19, size = 359, normalized size = 2.35 \[ -\frac {2\,f\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\left (e-2\,f\right )\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6};\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{3\,\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e + f*x)/((1 - x^3)^(1/2)*(x + 2)),x)

[Out]

- (2*f*((3^(1/2)*1i)/2 + 3/2)*(x^3 - 1)^(1/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x +
 (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin((-
(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/((1 - x^3)^(1/2)*(((3
^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2
)) - (2*((3^(1/2)*1i)/2 + 3/2)*(x^3 - 1)^(1/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x
+ (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(e - 2*f)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipt
icPi((3^(1/2)*1i)/6 + 1/2, asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i
)/2 - 3/2)))/(3*(1 - x^3)^(1/2)*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3
^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e + f x}{\sqrt {- \left (x - 1\right ) \left (x^{2} + x + 1\right )} \left (x + 2\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2+x)/(-x**3+1)**(1/2),x)

[Out]

Integral((e + f*x)/(sqrt(-(x - 1)*(x**2 + x + 1))*(x + 2)), x)

________________________________________________________________________________________