3.823 \(\int \frac {1}{\sqrt {-1+x}+\sqrt {(-1+x)^3}} \, dx\)

Optimal. Leaf size=68 \[ \frac {\sqrt {(x-1)^3} \tan ^{-1}\left (\sqrt {x-1}\right )}{(x-1)^{3/2}}+\tan ^{-1}\left (\sqrt {x-1}\right )-\frac {\sqrt {(x-1)^3} \tanh ^{-1}\left (\sqrt {x-1}\right )}{(x-1)^{3/2}}+\tanh ^{-1}\left (\sqrt {x-1}\right ) \]

[Out]

arctan((-1+x)^(1/2))+arctanh((-1+x)^(1/2))+arctan((-1+x)^(1/2))*((-1+x)^3)^(1/2)/(-1+x)^(3/2)-arctanh((-1+x)^(
1/2))*((-1+x)^3)^(1/2)/(-1+x)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 9, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.474, Rules used = {6729, 1593, 6725, 329, 212, 206, 203, 15, 298} \[ \frac {\sqrt {(x-1)^3} \tan ^{-1}\left (\sqrt {x-1}\right )}{(x-1)^{3/2}}+\tan ^{-1}\left (\sqrt {x-1}\right )-\frac {\sqrt {(x-1)^3} \tanh ^{-1}\left (\sqrt {x-1}\right )}{(x-1)^{3/2}}+\tanh ^{-1}\left (\sqrt {x-1}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[-1 + x] + Sqrt[(-1 + x)^3])^(-1),x]

[Out]

ArcTan[Sqrt[-1 + x]] + (Sqrt[(-1 + x)^3]*ArcTan[Sqrt[-1 + x]])/(-1 + x)^(3/2) + ArcTanh[Sqrt[-1 + x]] - (Sqrt[
(-1 + x)^3]*ArcTanh[Sqrt[-1 + x]])/(-1 + x)^(3/2)

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 6729

Int[(u_.)/((a_.)*(x_)^(m_.) + (b_.)*Sqrt[(c_.)*(x_)^(n_)]), x_Symbol] :> Int[(u*(a*x^m - b*Sqrt[c*x^n]))/(a^2*
x^(2*m) - b^2*c*x^n), x] /; FreeQ[{a, b, c, m, n}, x]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {-1+x}+\sqrt {(-1+x)^3}} \, dx &=\operatorname {Subst}\left (\int \frac {1}{\sqrt {x}+\sqrt {x^3}} \, dx,x,-1+x\right )\\ &=\operatorname {Subst}\left (\int \frac {\sqrt {x}-\sqrt {x^3}}{x-x^3} \, dx,x,-1+x\right )\\ &=\operatorname {Subst}\left (\int \frac {\sqrt {x}-\sqrt {x^3}}{x \left (1-x^2\right )} \, dx,x,-1+x\right )\\ &=\operatorname {Subst}\left (\int \left (-\frac {1}{\sqrt {x} \left (-1+x^2\right )}+\frac {\sqrt {x^3}}{x \left (-1+x^2\right )}\right ) \, dx,x,-1+x\right )\\ &=-\operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \left (-1+x^2\right )} \, dx,x,-1+x\right )+\operatorname {Subst}\left (\int \frac {\sqrt {x^3}}{x \left (-1+x^2\right )} \, dx,x,-1+x\right )\\ &=-\left (2 \operatorname {Subst}\left (\int \frac {1}{-1+x^4} \, dx,x,\sqrt {-1+x}\right )\right )+\frac {\sqrt {(-1+x)^3} \operatorname {Subst}\left (\int \frac {\sqrt {x}}{-1+x^2} \, dx,x,-1+x\right )}{(-1+x)^{3/2}}\\ &=\frac {\left (2 \sqrt {(-1+x)^3}\right ) \operatorname {Subst}\left (\int \frac {x^2}{-1+x^4} \, dx,x,\sqrt {-1+x}\right )}{(-1+x)^{3/2}}+\operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt {-1+x}\right )+\operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {-1+x}\right )\\ &=\tan ^{-1}\left (\sqrt {-1+x}\right )+\tanh ^{-1}\left (\sqrt {-1+x}\right )-\frac {\sqrt {(-1+x)^3} \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt {-1+x}\right )}{(-1+x)^{3/2}}+\frac {\sqrt {(-1+x)^3} \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {-1+x}\right )}{(-1+x)^{3/2}}\\ &=\tan ^{-1}\left (\sqrt {-1+x}\right )+\frac {\sqrt {(-1+x)^3} \tan ^{-1}\left (\sqrt {-1+x}\right )}{(-1+x)^{3/2}}+\tanh ^{-1}\left (\sqrt {-1+x}\right )-\frac {\sqrt {(-1+x)^3} \tanh ^{-1}\left (\sqrt {-1+x}\right )}{(-1+x)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 64, normalized size = 0.94 \[ \left (\frac {\sqrt {(x-1)^3}}{(x-1)^{3/2}}+1\right ) \tan ^{-1}\left (\sqrt {x-1}\right )+\frac {\left ((x-1)^{3/2}-\sqrt {(x-1)^3}\right ) \tanh ^{-1}\left (\sqrt {x-1}\right )}{(x-1)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[-1 + x] + Sqrt[(-1 + x)^3])^(-1),x]

[Out]

(1 + Sqrt[(-1 + x)^3]/(-1 + x)^(3/2))*ArcTan[Sqrt[-1 + x]] + (((-1 + x)^(3/2) - Sqrt[(-1 + x)^3])*ArcTanh[Sqrt
[-1 + x]])/(-1 + x)^(3/2)

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 8, normalized size = 0.12 \[ 2 \, \arctan \left (\sqrt {x - 1}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)^(1/2)+((-1+x)^3)^(1/2)),x, algorithm="fricas")

[Out]

2*arctan(sqrt(x - 1))

________________________________________________________________________________________

giac [A]  time = 0.41, size = 8, normalized size = 0.12 \[ 2 \, \arctan \left (\sqrt {x - 1}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)^(1/2)+((-1+x)^3)^(1/2)),x, algorithm="giac")

[Out]

2*arctan(sqrt(x - 1))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 40, normalized size = 0.59 \[ \frac {2 \arctan \left (\sqrt {\frac {\sqrt {\left (x -1\right )^{3}}}{\left (x -1\right )^{\frac {3}{2}}}}\, \sqrt {x -1}\right )}{\sqrt {\frac {\sqrt {\left (x -1\right )^{3}}}{\left (x -1\right )^{\frac {3}{2}}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((x-1)^(1/2)+((x-1)^3)^(1/2)),x)

[Out]

2/(((x-1)^3)^(1/2)/(x-1)^(3/2))^(1/2)*arctan((((x-1)^3)^(1/2)/(x-1)^(3/2))^(1/2)*(x-1)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ 2 \, \sqrt {x - 1} - \int \frac {\sqrt {x - 1}}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)^(1/2)+((-1+x)^3)^(1/2)),x, algorithm="maxima")

[Out]

2*sqrt(x - 1) - integrate(sqrt(x - 1)/x, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int -\frac {\sqrt {x-1}-\sqrt {{\left (x-1\right )}^3}}{{\left (x-1\right )}^3-x+1} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((x - 1)^(1/2) + ((x - 1)^3)^(1/2)),x)

[Out]

int(-((x - 1)^(1/2) - ((x - 1)^3)^(1/2))/((x - 1)^3 - x + 1), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {x - 1} + \sqrt {\left (x - 1\right )^{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)**(1/2)+((-1+x)**3)**(1/2)),x)

[Out]

Integral(1/(sqrt(x - 1) + sqrt((x - 1)**3)), x)

________________________________________________________________________________________