3.793 \(\int \frac {x^2}{\sqrt {a+8 x-8 x^2+4 x^3-x^4}} \, dx\)

Optimal. Leaf size=388 \[ \frac {\left (1-\sqrt {a+4}\right ) (x-1) \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right )}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\tan ^{-1}\left (\frac {(x-1)^2+1}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}\right )+\frac {\sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) F\left (\tan ^{-1}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}}-\frac {\left (1-\sqrt {a+4}\right ) \sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}} \]

[Out]

arctan((1+(-1+x)^2)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2))+(-1+x)*(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1-(4+a)^(1/2))/(3+a-
2*(-1+x)^2-(-1+x)^4)^(1/2)+(1/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)*(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2)*EllipticF
((-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2),(-2*(4+a)^(1/2)/(1-(4+a)^(1/2)))^(1/2))*(1+(-
1+x)^2/(1-(4+a)^(1/2)))*(1+(4+a)^(1/2))^(1/2)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)/((1+(-1+x)^2/(1-(4+a)^(1/2)))/(1
+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)-(1/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)*(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2)*El
lipticE((-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2),(-2*(4+a)^(1/2)/(1-(4+a)^(1/2)))^(1/2)
)*(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1-(4+a)^(1/2))*(1+(4+a)^(1/2))^(1/2)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)/((1+(-1+x
)^2/(1-(4+a)^(1/2)))/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 388, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 11, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.393, Rules used = {1680, 1673, 1202, 531, 418, 492, 411, 12, 1107, 621, 204} \[ \frac {\left (1-\sqrt {a+4}\right ) (x-1) \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right )}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\tan ^{-1}\left (\frac {(x-1)^2+1}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}\right )+\frac {\sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) F\left (\tan ^{-1}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}}-\frac {\left (1-\sqrt {a+4}\right ) \sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]

[Out]

((1 - Sqrt[4 + a])*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*(-1 + x))/Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4] + ArcT
an[(1 + (-1 + x)^2)/Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]] - ((1 - Sqrt[4 + a])*Sqrt[1 + Sqrt[4 + a]]*(1 + (
-1 + x)^2/(1 - Sqrt[4 + a]))*EllipticE[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 +
a])])/(Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(-1 + x)^2 -
 (-1 + x)^4]) + (Sqrt[1 + Sqrt[4 + a]]*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*EllipticF[ArcTan[(-1 + x)/Sqrt[1 + S
qrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1
 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1202

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[(Sqrt[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)])/Sqrt[a + b*x^2 + c*x^4], Int[(d + e*x^2)/(Sqr
t[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c
, 0] && NegQ[c/a]

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1680

Int[(Pq_)*(Q4_)^(p_), x_Symbol] :> With[{a = Coeff[Q4, x, 0], b = Coeff[Q4, x, 1], c = Coeff[Q4, x, 2], d = Co
eff[Q4, x, 3], e = Coeff[Q4, x, 4]}, Subst[Int[SimplifyIntegrand[(Pq /. x -> -(d/(4*e)) + x)*(a + d^4/(256*e^3
) - (b*d)/(8*e) + (c - (3*d^2)/(8*e))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2,
0] && NeQ[d, 0]] /; FreeQ[p, x] && PolyQ[Pq, x] && PolyQ[Q4, x, 4] &&  !IGtQ[p, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\sqrt {a+8 x-8 x^2+4 x^3-x^4}} \, dx &=\operatorname {Subst}\left (\int \frac {(1+x)^2}{\sqrt {3+a-2 x^2-x^4}} \, dx,x,-1+x\right )\\ &=\operatorname {Subst}\left (\int \frac {2 x}{\sqrt {3+a-2 x^2-x^4}} \, dx,x,-1+x\right )+\operatorname {Subst}\left (\int \frac {1+x^2}{\sqrt {3+a-2 x^2-x^4}} \, dx,x,-1+x\right )\\ &=2 \operatorname {Subst}\left (\int \frac {x}{\sqrt {3+a-2 x^2-x^4}} \, dx,x,-1+x\right )+\frac {\left (\sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \operatorname {Subst}\left (\int \frac {1+x^2}{\sqrt {1-\frac {2 x^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}} \, dx,x,-1+x\right )}{\sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac {\left (\sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {2 x^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}} \, dx,x,-1+x\right )}{\sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\frac {\left (\sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {1-\frac {2 x^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}} \, dx,x,-1+x\right )}{\sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\operatorname {Subst}\left (\int \frac {1}{\sqrt {3+a-2 x-x^2}} \, dx,x,(-1+x)^2\right )\\ &=-\frac {\left (1-\sqrt {4+a}\right ) \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) (1-x)}{\sqrt {3+a-2 (1-x)^2-(1-x)^4}}-\frac {\sqrt {1+\sqrt {4+a}} \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) F\left (\tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{\sqrt {\frac {1+\frac {(1-x)^2}{1-\sqrt {4+a}}}{1+\frac {(1-x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (1-x)^2-(1-x)^4}}+2 \operatorname {Subst}\left (\int \frac {1}{-4-x^2} \, dx,x,-\frac {2 \left (1+(-1+x)^2\right )}{\sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\right )-\frac {\left (\left (1-\sqrt {4+a}\right ) \sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}}{\left (1-\frac {2 x^2}{-2-2 \sqrt {4+a}}\right )^{3/2}} \, dx,x,-1+x\right )}{\sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=-\frac {\left (1-\sqrt {4+a}\right ) \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) (1-x)}{\sqrt {3+a-2 (1-x)^2-(1-x)^4}}+\tan ^{-1}\left (\frac {1+(-1+x)^2}{\sqrt {3+a-2 (1-x)^2-(1-x)^4}}\right )+\frac {\left (1-\sqrt {4+a}\right ) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) E\left (\tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{\sqrt {\frac {1+\frac {(1-x)^2}{1-\sqrt {4+a}}}{1+\frac {(1-x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (1-x)^2-(1-x)^4}}-\frac {\sqrt {1+\sqrt {4+a}} \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) F\left (\tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{\sqrt {\frac {1+\frac {(1-x)^2}{1-\sqrt {4+a}}}{1+\frac {(1-x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (1-x)^2-(1-x)^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 6.06, size = 1247, normalized size = 3.21 \[ \frac {2 \left (\sqrt {-\sqrt {a+4}-1}+\sqrt {\sqrt {a+4}-1}\right ) \sqrt {\frac {\left (\sqrt {-\sqrt {a+4}-1}-\sqrt {\sqrt {a+4}-1}\right ) \left (x+\sqrt {-\sqrt {a+4}-1}-1\right )}{\left (\sqrt {-\sqrt {a+4}-1}+\sqrt {\sqrt {a+4}-1}\right ) \left (-x+\sqrt {-\sqrt {a+4}-1}+1\right )}} \sqrt {\frac {\sqrt {-\sqrt {a+4}-1} \left (x-\sqrt {\sqrt {a+4}-1}-1\right )}{\left (\sqrt {-\sqrt {a+4}-1}+\sqrt {\sqrt {a+4}-1}\right ) \left (x-\sqrt {-\sqrt {a+4}-1}-1\right )}} \sqrt {\frac {\sqrt {-\sqrt {a+4}-1} \left (x+\sqrt {\sqrt {a+4}-1}-1\right )}{\left (\sqrt {-\sqrt {a+4}-1}-\sqrt {\sqrt {a+4}-1}\right ) \left (x-\sqrt {-\sqrt {a+4}-1}-1\right )}} \left (\frac {\left (\sqrt {-\sqrt {a+4}-1}-\sqrt {\sqrt {a+4}-1}\right ) E\left (\sin ^{-1}\left (\sqrt {\frac {\left (\sqrt {-\sqrt {a+4}-1}-\sqrt {\sqrt {a+4}-1}\right ) \left (x+\sqrt {-\sqrt {a+4}-1}-1\right )}{\left (\sqrt {-\sqrt {a+4}-1}+\sqrt {\sqrt {a+4}-1}\right ) \left (-x+\sqrt {-\sqrt {a+4}-1}+1\right )}}\right )|\frac {\left (\sqrt {-\sqrt {a+4}-1}+\sqrt {\sqrt {a+4}-1}\right )^2}{\left (\sqrt {-\sqrt {a+4}-1}-\sqrt {\sqrt {a+4}-1}\right )^2}\right )}{2 \sqrt {-\sqrt {a+4}-1}}+\frac {\left (\left (\sqrt {-\sqrt {a+4}-1}-1\right ) \left (\sqrt {-\sqrt {a+4}-1}-\sqrt {\sqrt {a+4}-1}\right )-\left (-\sqrt {-\sqrt {a+4}-1}-1\right ) \left (-\sqrt {-\sqrt {a+4}-1}-\sqrt {\sqrt {a+4}-1}-2\right )\right ) F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\sqrt {-\sqrt {a+4}-1}-\sqrt {\sqrt {a+4}-1}\right ) \left (x+\sqrt {-\sqrt {a+4}-1}-1\right )}{\left (\sqrt {-\sqrt {a+4}-1}+\sqrt {\sqrt {a+4}-1}\right ) \left (-x+\sqrt {-\sqrt {a+4}-1}+1\right )}}\right )|\frac {\left (\sqrt {-\sqrt {a+4}-1}+\sqrt {\sqrt {a+4}-1}\right )^2}{\left (\sqrt {-\sqrt {a+4}-1}-\sqrt {\sqrt {a+4}-1}\right )^2}\right )}{2 \sqrt {-\sqrt {a+4}-1} \left (\sqrt {\sqrt {a+4}-1}-\sqrt {-\sqrt {a+4}-1}\right )}+\frac {4 \Pi \left (\frac {\sqrt {-\sqrt {a+4}-1}+\sqrt {\sqrt {a+4}-1}}{\sqrt {\sqrt {a+4}-1}-\sqrt {-\sqrt {a+4}-1}};\sin ^{-1}\left (\sqrt {\frac {\left (\sqrt {-\sqrt {a+4}-1}-\sqrt {\sqrt {a+4}-1}\right ) \left (x+\sqrt {-\sqrt {a+4}-1}-1\right )}{\left (\sqrt {-\sqrt {a+4}-1}+\sqrt {\sqrt {a+4}-1}\right ) \left (-x+\sqrt {-\sqrt {a+4}-1}+1\right )}}\right )|\frac {\left (\sqrt {-\sqrt {a+4}-1}+\sqrt {\sqrt {a+4}-1}\right )^2}{\left (\sqrt {-\sqrt {a+4}-1}-\sqrt {\sqrt {a+4}-1}\right )^2}\right )}{\sqrt {\sqrt {a+4}-1}-\sqrt {-\sqrt {a+4}-1}}\right ) \left (x-\sqrt {-\sqrt {a+4}-1}-1\right )^2+\left (x+\sqrt {-\sqrt {a+4}-1}-1\right ) \left (x-\sqrt {\sqrt {a+4}-1}-1\right ) \left (x+\sqrt {\sqrt {a+4}-1}-1\right )}{\sqrt {a-x \left (x^3-4 x^2+8 x-8\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]

[Out]

((-1 + Sqrt[-1 - Sqrt[4 + a]] + x)*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x)*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x) + 2*(Sq
rt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - Sqrt[4 + a
]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 +
a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt
[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*
(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 +
 a]] + x))]*(((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*EllipticE[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]]
 - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]
])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4
+ a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(2*Sqrt[-1 - Sqrt[4 + a]]) + ((-((-1 - Sqrt[-1 - Sqrt[4 + a]])*(-2 - Sqrt[
-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])) + (-1 + Sqrt[-1 - Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1
 + Sqrt[4 + a]]))*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqr
t[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[
-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(2*Sqrt[-1
 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])) + (4*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] +
Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a
]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 +
a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[
4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])))/Sqrt[a - x*(-8 + 8*
x - 4*x^2 + x^3)]

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x} x^{2}}{x^{4} - 4 \, x^{3} + 8 \, x^{2} - a - 8 \, x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x^2/(x^4 - 4*x^3 + 8*x^2 - a - 8*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="giac")

[Out]

integrate(x^2/sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x), x)

________________________________________________________________________________________

maple [B]  time = 0.03, size = 1147, normalized size = 2.96 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x)

[Out]

((x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1-(a+4)^(1/2))^(1/2))*(x-1+(-1-(a+4)^(1/2))^(1/2))+((-1-(a+4)^(1/2))^(1/2
)+(-1+(a+4)^(1/2))^(1/2))*((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1
-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(a+4)^(1/2))^(1/2))^2
*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1-(-1-(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+
(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1+(-1-(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2
)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(-1/2*((1-(-1+(a+4)^(1/2))^(1/2))*(1+(-1+(a+4)^(
1/2))^(1/2))-(1-(-1-(a+4)^(1/2))^(1/2))*(1+(-1+(a+4)^(1/2))^(1/2))+(1-(-1-(a+4)^(1/2))^(1/2))*(1-(-1+(a+4)^(1/
2))^(1/2))+(1-(-1+(a+4)^(1/2))^(1/2))^2)/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-1+(a+4)^(1/2))^(1/
2)*EllipticF(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))
^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^
(1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(
a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2))-1/2*(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*Ellipti
cE(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1
+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-
1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2)
)^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2))/(-1+(a+4)^(1/2))^(1/2)-4/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/
2))*EllipticPi(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2
))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2),((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^
(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-1-
(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^
(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2))))/(-(x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1-(
a+4)^(1/2))^(1/2))*(x-1+(-1-(a+4)^(1/2))^(1/2)))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^2}{\sqrt {-x^4+4\,x^3-8\,x^2+8\,x+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(1/2),x)

[Out]

int(x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {a - x^{4} + 4 x^{3} - 8 x^{2} + 8 x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-x**4+4*x**3-8*x**2+a+8*x)**(1/2),x)

[Out]

Integral(x**2/sqrt(a - x**4 + 4*x**3 - 8*x**2 + 8*x), x)

________________________________________________________________________________________