3.784 \(\int \frac {1}{(a+8 x-8 x^2+4 x^3-x^4)^{3/2}} \, dx\)

Optimal. Leaf size=437 \[ \frac {(x-1) \left (a+(x-1)^2+5\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}-\frac {\left (1-\sqrt {a+4}\right ) (x-1) \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right )}{2 (a+3) (a+4) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {\sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) F\left (\tan ^{-1}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{2 (a+4) \sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {\left (1-\sqrt {a+4}\right ) \sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{2 (a+3) (a+4) \sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}} \]

[Out]

1/2*(5+a+(-1+x)^2)*(-1+x)/(a^2+7*a+12)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)-1/2*(-1+x)*(1+(-1+x)^2/(1-(4+a)^(1/2)))
*(1-(4+a)^(1/2))/(a^2+7*a+12)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)+1/2*(1/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)*(1+(-
1+x)^2/(1+(4+a)^(1/2)))^(1/2)*EllipticF((-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2),(-2*(4
+a)^(1/2)/(1-(4+a)^(1/2)))^(1/2))*(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1+(4+a)^(1/2))^(1/2)/(4+a)/(3+a-2*(-1+x)^2-(-1
+x)^4)^(1/2)/((1+(-1+x)^2/(1-(4+a)^(1/2)))/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)+1/2*(1/(1+(-1+x)^2/(1+(4+a)^(1/
2))))^(1/2)*(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2)*EllipticE((-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(-1+x)^2/(1+(4+a)^(1/
2)))^(1/2),(-2*(4+a)^(1/2)/(1-(4+a)^(1/2)))^(1/2))*(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1-(4+a)^(1/2))*(1+(4+a)^(1/2)
)^(1/2)/(a^2+7*a+12)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)/((1+(-1+x)^2/(1-(4+a)^(1/2)))/(1+(-1+x)^2/(1+(4+a)^(1/2))
))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.42, antiderivative size = 437, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {1106, 1092, 1202, 531, 418, 492, 411} \[ \frac {(x-1) \left (a+(x-1)^2+5\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}-\frac {\left (1-\sqrt {a+4}\right ) (x-1) \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right )}{2 (a+3) (a+4) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {\sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) F\left (\tan ^{-1}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{2 (a+4) \sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {\left (1-\sqrt {a+4}\right ) \sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{2 (a+3) (a+4) \sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}} \]

Antiderivative was successfully verified.

[In]

Int[(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(-3/2),x]

[Out]

((5 + a + (-1 + x)^2)*(-1 + x))/(2*(12 + 7*a + a^2)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) - ((1 - Sqrt[4 +
a])*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*(-1 + x))/(2*(3 + a)*(4 + a)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) +
 ((1 - Sqrt[4 + a])*Sqrt[1 + Sqrt[4 + a]]*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*EllipticE[ArcTan[(-1 + x)/Sqrt[1
+ Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(2*(3 + a)*(4 + a)*Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]
))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]) + (Sqrt[1 + Sqrt[4 + a]]*(1 +
(-1 + x)^2/(1 - Sqrt[4 + a]))*EllipticF[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 +
 a])])/(2*(4 + a)*Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(
-1 + x)^2 - (-1 + x)^4])

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 1092

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> -Simp[(x*(b^2 - 2*a*c + b*c*x^2)*(a + b*x^2 + c*x^
4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)*(b^2 - 4*a*c)), Int[(b^2 - 2*a*c + 2*(p + 1)
*(b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*
a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1106

Int[(P4_)^(p_), x_Symbol] :> With[{a = Coeff[P4, x, 0], b = Coeff[P4, x, 1], c = Coeff[P4, x, 2], d = Coeff[P4
, x, 3], e = Coeff[P4, x, 4]}, Subst[Int[SimplifyIntegrand[(a + d^4/(256*e^3) - (b*d)/(8*e) + (c - (3*d^2)/(8*
e))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2, 0] && NeQ[d, 0]] /; FreeQ[p, x] &&
 PolyQ[P4, x, 4] && NeQ[p, 2] && NeQ[p, 3]

Rule 1202

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[(Sqrt[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)])/Sqrt[a + b*x^2 + c*x^4], Int[(d + e*x^2)/(Sqr
t[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c
, 0] && NegQ[c/a]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx &=\operatorname {Subst}\left (\int \frac {1}{\left (3+a-2 x^2-x^4\right )^{3/2}} \, dx,x,-1+x\right )\\ &=\frac {\left (5+a+(-1+x)^2\right ) (-1+x)}{2 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}-\frac {\operatorname {Subst}\left (\int \frac {-2 (3+a)+2 x^2}{\sqrt {3+a-2 x^2-x^4}} \, dx,x,-1+x\right )}{4 \left (12+7 a+a^2\right )}\\ &=\frac {\left (5+a+(-1+x)^2\right ) (-1+x)}{2 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}-\frac {\left (\sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \operatorname {Subst}\left (\int \frac {-2 (3+a)+2 x^2}{\sqrt {1-\frac {2 x^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}} \, dx,x,-1+x\right )}{4 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac {\left (5+a+(-1+x)^2\right ) (-1+x)}{2 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}-\frac {\left (\sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {1-\frac {2 x^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}} \, dx,x,-1+x\right )}{2 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\frac {\left ((3+a) \sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {2 x^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}} \, dx,x,-1+x\right )}{2 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac {\left (1-\sqrt {4+a}\right ) \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) (1-x)}{2 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (1-x)^2-(1-x)^4}}+\frac {\left (5+a+(-1+x)^2\right ) (-1+x)}{2 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}-\frac {\sqrt {1+\sqrt {4+a}} \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) F\left (\tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{2 (4+a) \sqrt {\frac {1+\frac {(1-x)^2}{1-\sqrt {4+a}}}{1+\frac {(1-x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (1-x)^2-(1-x)^4}}+\frac {\left (\left (1-\sqrt {4+a}\right ) \sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}}{\left (1-\frac {2 x^2}{-2-2 \sqrt {4+a}}\right )^{3/2}} \, dx,x,-1+x\right )}{2 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac {\left (1-\sqrt {4+a}\right ) \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) (1-x)}{2 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (1-x)^2-(1-x)^4}}+\frac {\left (5+a+(-1+x)^2\right ) (-1+x)}{2 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}-\frac {\left (1-\sqrt {4+a}\right ) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) E\left (\tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{2 \left (12+7 a+a^2\right ) \sqrt {\frac {1+\frac {(1-x)^2}{1-\sqrt {4+a}}}{1+\frac {(1-x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (1-x)^2-(1-x)^4}}-\frac {\sqrt {1+\sqrt {4+a}} \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) F\left (\tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{2 (4+a) \sqrt {\frac {1+\frac {(1-x)^2}{1-\sqrt {4+a}}}{1+\frac {(1-x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (1-x)^2-(1-x)^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 6.09, size = 3526, normalized size = 8.07 \[ \text {Result too large to show} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(-3/2),x]

[Out]

((6 + a - 8*x - a*x + 3*x^2 - x^3)*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4])/(2*(3 + a)*(4 + a)*(-a - 8*x + 8*x^2 -
 4*x^3 + x^4)) + ((4*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sq
rt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 +
 a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1
+ Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sq
rt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]
])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]
])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[
4 + a]] + x))]], ((-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[
4 + a]]))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]
))])/(Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 -
 x^4]) + (2*a*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((-S
qrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] +
Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[
4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqr
t[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1
- Sqrt[-1 - Sqrt[4 + a]] + x))]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1
+ Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]]
 + x))]], ((-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]
))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))])/(S
qrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4])
+ (4*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - S
qrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 +
Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x
))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt
[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 -
 Sqrt[4 + a]] + x))]*((-1 - Sqrt[-1 - Sqrt[4 + a]])*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 +
 Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt
[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt
[-1 + Sqrt[4 + a]])^2] + 2*Sqrt[-1 - Sqrt[4 + a]]*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])
/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 +
 a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqr
t[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqr
t[4 + a]])^2]))/(Sqrt[-1 - Sqrt[4 + a]]*(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2
 + 4*x^3 - x^4]) - ((-1 + Sqrt[-1 - Sqrt[4 + a]] + x)*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x)*(-1 + Sqrt[-1 + Sqrt[4
 + a]] + x) + 2*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((S
qrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] +
Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4
 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt
[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 -
 Sqrt[-1 - Sqrt[4 + a]] + x))]*(((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*EllipticE[ArcSin[Sqrt[((Sqr
t[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sq
rt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2
/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(2*Sqrt[-1 - Sqrt[4 + a]]) + ((-((-1 - Sqrt[-1 - Sqrt[4
 + a]])*(-2 - Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])) + (-1 + Sqrt[-1 - Sqrt[4 + a]])*(Sqrt[-1 - Sqr
t[4 + a]] - Sqrt[-1 + Sqrt[4 + a]]))*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*
(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 +
a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 +
a]])^2])/(2*Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])) + (4*EllipticPi[(Sqrt[-
1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((S
qrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] +
Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])
^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])))/
Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4])/(2*(3 + a)*(4 + a))

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x}}{x^{8} - 8 \, x^{7} + 32 \, x^{6} - 2 \, {\left (a - 64\right )} x^{4} - 80 \, x^{5} + 8 \, {\left (a - 16\right )} x^{3} - 16 \, {\left (a - 4\right )} x^{2} + a^{2} + 16 \, a x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)/(x^8 - 8*x^7 + 32*x^6 - 2*(a - 64)*x^4 - 80*x^5 + 8*(a - 16)*x^3
 - 16*(a - 4)*x^2 + a^2 + 16*a*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x, algorithm="giac")

[Out]

integrate((-x^4 + 4*x^3 - 8*x^2 + a + 8*x)^(-3/2), x)

________________________________________________________________________________________

maple [B]  time = 0.03, size = 2601, normalized size = 5.95 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x)

[Out]

2*(1/4/(a^2+7*a+12)*x^3-3/4/(a^2+7*a+12)*x^2+1/4*(a+8)/(a^2+7*a+12)*x-1/4*(a+6)/(a^2+7*a+12))/(-x^4+4*x^3-8*x^
2+a+8*x)^(1/2)-((a+5)/(a^2+7*a+12)-1/2*(a+8)/(a^2+7*a+12))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*((-
(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)
^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(a+4)^(1/2))^(1/2))^2*(-2*(-1+(a+4)^(1/2))^(1/2)*(
x-1-(-1-(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2
)*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1+(-1-(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-
1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-1+(a+4)^(1/2))^(1/2)/(-(x-
1-(-1+(a+4)^(1/2))^(1/2))*(x-1+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1-(a+4)^(1/2))^(1/2))*(x-1+(-1-(a+4)^(1/2))^(1/2
)))^(1/2)*EllipticF(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)
^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^
(1/2))^(1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))
/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2))-1/(a^2+7*a+12)*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2
))^(1/2))*((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1
/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(a+4)^(1/2))^(1/2))^2*(-2*(-1+(a+4)^(
1/2))^(1/2)*(x-1-(-1-(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))
^(1/2)))^(1/2)*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1+(-1-(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2
))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-1+(a+4)^(1/2)
)^(1/2)/(-(x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1-(a+4)^(1/2))^(1/2))*(x-1+(-1-(a+4
)^(1/2))^(1/2)))^(1/2)*((1-(-1+(a+4)^(1/2))^(1/2))*EllipticF(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))
*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(
1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-(-1-(
a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2))+2*(-1+(a+4)^
(1/2))^(1/2)*EllipticPi(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(
a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2),(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+
4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2)),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(
1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a
+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2)))-1/2/(a^2+7*a+12)*((x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1-(a+4
)^(1/2))^(1/2))*(x-1+(-1-(a+4)^(1/2))^(1/2))+((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*((-(-1-(a+4)^(1/2
))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))
/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(a+4)^(1/2))^(1/2))^2*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1-(-1-(a+4)^
(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(a+4
)^(1/2))^(1/2)*(x-1+(-1-(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1
/2))^(1/2)))^(1/2)*(-1/2*((1-(-1+(a+4)^(1/2))^(1/2))*(1+(-1+(a+4)^(1/2))^(1/2))-(1-(-1-(a+4)^(1/2))^(1/2))*(1+
(-1+(a+4)^(1/2))^(1/2))+(1-(-1-(a+4)^(1/2))^(1/2))*(1-(-1+(a+4)^(1/2))^(1/2))+(1-(-1+(a+4)^(1/2))^(1/2))^2)/(-
(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-1+(a+4)^(1/2))^(1/2)*EllipticF(((-(-1-(a+4)^(1/2))^(1/2)+(-1+
(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+
4)^(1/2))^(1/2)))^(1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1
/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^
(1/2))-1/2*(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*EllipticE(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2
))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^
(1/2)))^(1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2)
)/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2))/(-1
+(a+4)^(1/2))^(1/2)-4/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*EllipticPi(((-(-1-(a+4)^(1/2))^(1/2)+(-
1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(
a+4)^(1/2))^(1/2)))^(1/2),((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1
/2))^(1/2)),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/
(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2))))/(-(
x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1-(a+4)^(1/2))^(1/2))*(x-1+(-1-(a+4)^(1/2))^(1
/2)))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x, algorithm="maxima")

[Out]

integrate((-x^4 + 4*x^3 - 8*x^2 + a + 8*x)^(-3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{{\left (-x^4+4\,x^3-8\,x^2+8\,x+a\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2),x)

[Out]

int(1/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a - x^{4} + 4 x^{3} - 8 x^{2} + 8 x\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-x**4+4*x**3-8*x**2+a+8*x)**(3/2),x)

[Out]

Integral((a - x**4 + 4*x**3 - 8*x**2 + 8*x)**(-3/2), x)

________________________________________________________________________________________