3.782 \(\int \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx\)

Optimal. Leaf size=397 \[ \frac {1}{3} (x-1) \sqrt {a-(x-1)^4-2 (x-1)^2+3}-\frac {2 \left (1-\sqrt {a+4}\right ) (x-1) \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right )}{3 \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {2 (a+3) \sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) F\left (\tan ^{-1}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{3 \sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {2 \left (1-\sqrt {a+4}\right ) \sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{3 \sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}} \]

[Out]

-2/3*(-1+x)*(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1-(4+a)^(1/2))/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)+1/3*(-1+x)*(3+a-2*(-1
+x)^2-(-1+x)^4)^(1/2)+2/3*(3+a)*(1/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)*(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2)*Elli
pticF((-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2),(-2*(4+a)^(1/2)/(1-(4+a)^(1/2)))^(1/2))*
(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1+(4+a)^(1/2))^(1/2)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)/((1+(-1+x)^2/(1-(4+a)^(1/2)
))/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)+2/3*(1/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)*(1+(-1+x)^2/(1+(4+a)^(1/2)))
^(1/2)*EllipticE((-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2),(-2*(4+a)^(1/2)/(1-(4+a)^(1/2
)))^(1/2))*(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1-(4+a)^(1/2))*(1+(4+a)^(1/2))^(1/2)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)/
((1+(-1+x)^2/(1-(4+a)^(1/2)))/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.40, antiderivative size = 397, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {1106, 1091, 1202, 531, 418, 492, 411} \[ \frac {1}{3} (x-1) \sqrt {a-(x-1)^4-2 (x-1)^2+3}-\frac {2 \left (1-\sqrt {a+4}\right ) (x-1) \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right )}{3 \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {2 (a+3) \sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) F\left (\tan ^{-1}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{3 \sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {2 \left (1-\sqrt {a+4}\right ) \sqrt {\sqrt {a+4}+1} \left (\frac {(x-1)^2}{1-\sqrt {a+4}}+1\right ) E\left (\tan ^{-1}\left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{3 \sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {a-(x-1)^4-2 (x-1)^2+3}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]

[Out]

(-2*(1 - Sqrt[4 + a])*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*(-1 + x))/(3*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])
 + (Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]*(-1 + x))/3 + (2*(1 - Sqrt[4 + a])*Sqrt[1 + Sqrt[4 + a]]*(1 + (-1
+ x)^2/(1 - Sqrt[4 + a]))*EllipticE[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])
])/(3*Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(-1 + x)^2 -
(-1 + x)^4]) + (2*(3 + a)*Sqrt[1 + Sqrt[4 + a]]*(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))*EllipticF[ArcTan[(-1 + x)/S
qrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(3*Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-
1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 1091

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a + b*x^2 + c*x^4)^p)/(4*p + 1), x] + Dis
t[(2*p)/(4*p + 1), Int[(2*a + b*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4
*a*c, 0] && GtQ[p, 0] && IntegerQ[2*p]

Rule 1106

Int[(P4_)^(p_), x_Symbol] :> With[{a = Coeff[P4, x, 0], b = Coeff[P4, x, 1], c = Coeff[P4, x, 2], d = Coeff[P4
, x, 3], e = Coeff[P4, x, 4]}, Subst[Int[SimplifyIntegrand[(a + d^4/(256*e^3) - (b*d)/(8*e) + (c - (3*d^2)/(8*
e))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2, 0] && NeQ[d, 0]] /; FreeQ[p, x] &&
 PolyQ[P4, x, 4] && NeQ[p, 2] && NeQ[p, 3]

Rule 1202

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[(Sqrt[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)])/Sqrt[a + b*x^2 + c*x^4], Int[(d + e*x^2)/(Sqr
t[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c
, 0] && NegQ[c/a]

Rubi steps

\begin {align*} \int \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx &=\operatorname {Subst}\left (\int \sqrt {3+a-2 x^2-x^4} \, dx,x,-1+x\right )\\ &=\frac {1}{3} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac {1}{3} \operatorname {Subst}\left (\int \frac {2 (3+a)-2 x^2}{\sqrt {3+a-2 x^2-x^4}} \, dx,x,-1+x\right )\\ &=\frac {1}{3} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)+\frac {\left (\sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \operatorname {Subst}\left (\int \frac {2 (3+a)-2 x^2}{\sqrt {1-\frac {2 x^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}} \, dx,x,-1+x\right )}{3 \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac {1}{3} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)-\frac {\left (2 \sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {1-\frac {2 x^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}} \, dx,x,-1+x\right )}{3 \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\frac {\left (2 (3+a) \sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {2 x^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}} \, dx,x,-1+x\right )}{3 \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac {2 \left (1-\sqrt {4+a}\right ) \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) (1-x)}{3 \sqrt {3+a-2 (1-x)^2-(1-x)^4}}+\frac {1}{3} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)-\frac {2 (3+a) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) F\left (\tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{3 \sqrt {\frac {1+\frac {(1-x)^2}{1-\sqrt {4+a}}}{1+\frac {(1-x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (1-x)^2-(1-x)^4}}+\frac {\left (2 \left (1-\sqrt {4+a}\right ) \sqrt {1-\frac {2 (-1+x)^2}{-2-2 \sqrt {4+a}}} \sqrt {1-\frac {2 (-1+x)^2}{-2+2 \sqrt {4+a}}}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1-\frac {2 x^2}{-2+2 \sqrt {4+a}}}}{\left (1-\frac {2 x^2}{-2-2 \sqrt {4+a}}\right )^{3/2}} \, dx,x,-1+x\right )}{3 \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\\ &=\frac {2 \left (1-\sqrt {4+a}\right ) \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) (1-x)}{3 \sqrt {3+a-2 (1-x)^2-(1-x)^4}}+\frac {1}{3} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4} (-1+x)-\frac {2 \left (1-\sqrt {4+a}\right ) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) E\left (\tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{3 \sqrt {\frac {1+\frac {(1-x)^2}{1-\sqrt {4+a}}}{1+\frac {(1-x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (1-x)^2-(1-x)^4}}-\frac {2 (3+a) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(1-x)^2}{1-\sqrt {4+a}}\right ) F\left (\tan ^{-1}\left (\frac {1-x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{3 \sqrt {\frac {1+\frac {(1-x)^2}{1-\sqrt {4+a}}}{1+\frac {(1-x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (1-x)^2-(1-x)^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 6.06, size = 3470, normalized size = 8.74 \[ \text {Result too large to show} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]

[Out]

(-1/3 + x/3)*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4] + (2*((4*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(
-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sq
rt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(
Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(
-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 -
 Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 -
 Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1
+ Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]], ((-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqr
t[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 -
Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))])/(Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4
+ a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (2*a*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sq
rt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 +
a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1
 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sq
rt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4
 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[4
 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[
4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]], ((-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 -
Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4
+ a]] + Sqrt[-1 + Sqrt[4 + a]]))])/(Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*
Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (4*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - S
qrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/
((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1 - Sqrt[4 +
 a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqr
t[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sq
rt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*((-1 - Sqrt[-1 - Sqrt[4 + a]])*EllipticF[ArcSin[Sqrt
[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]
] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 +
a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2] + 2*Sqrt[-1 - Sqrt[4 + a]]*EllipticPi[(Sqrt[-1 - S
qrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-
1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[
-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(S
qrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2]))/(Sqrt[-1 - Sqrt[4 + a]]*(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1
 + Sqrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) - ((-1 + Sqrt[-1 - Sqrt[4 + a]] + x)*(-1 - Sqrt[-1 + Sqr
t[4 + a]] + x)*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x) + 2*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - S
qrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 +
a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[(Sqrt[-1
- Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqr
t[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4
+ a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*(((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt
[4 + a]])*EllipticE[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]
] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqr
t[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(2*Sqrt[-1 - Sqrt[
4 + a]]) + ((-((-1 - Sqrt[-1 - Sqrt[4 + a]])*(-2 - Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])) + (-1 + S
qrt[-1 - Sqrt[4 + a]])*(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]]))*EllipticF[ArcSin[Sqrt[((Sqrt[-1 - Sq
rt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + S
qrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1
 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(2*Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + S
qrt[4 + a]])) + (4*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])/(-Sqrt[-1 - Sqrt[4 + a]] + Sqr
t[-1 + Sqrt[4 + a]]), ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 +
a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - S
qrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2])/(-Sqrt[-1 - Sqrt
[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])))/Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]))/3

________________________________________________________________________________________

fricas [F]  time = 0.40, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x), x)

________________________________________________________________________________________

maple [B]  time = 0.03, size = 2519, normalized size = 6.35 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x)

[Out]

1/3*x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)-1/3*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)-(2/3*a+4/3)*((-1-(a+4)^(1/2))^(1/2)+(-
1+(a+4)^(1/2))^(1/2))*((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+
4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(a+4)^(1/2))^(1/2))^2*(-2
*(-1+(a+4)^(1/2))^(1/2)*(x-1-(-1-(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+
(a+4)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1+(-1-(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-
1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-1
+(a+4)^(1/2))^(1/2)/(-(x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1-(a+4)^(1/2))^(1/2))*(
x-1+(-1-(a+4)^(1/2))^(1/2)))^(1/2)*EllipticF(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^
(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2),((-(-1-(a+4
)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2
)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2))-4/3*((-1-(a+4)^(1/2))^(1/2)+
(-1+(a+4)^(1/2))^(1/2))*((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(
a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(a+4)^(1/2))^(1/2))^2*(
-2*(-1+(a+4)^(1/2))^(1/2)*(x-1-(-1-(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-
1+(a+4)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1+(-1-(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-
(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(
-1+(a+4)^(1/2))^(1/2)/(-(x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1-(a+4)^(1/2))^(1/2))
*(x-1+(-1-(a+4)^(1/2))^(1/2)))^(1/2)*((1-(-1+(a+4)^(1/2))^(1/2))*EllipticF(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)
^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1
/2))^(1/2)))^(1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^
(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2)
)+2*(-1+(a+4)^(1/2))^(1/2)*EllipticPi(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^
(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2),(-(-1-(a+4)^(1/2))
^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2)),((-(-1-(a+4)^(1/2))^(1/2)-(-1+
(a+4)^(1/2))^(1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^
(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2)))-2/3*((x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1-(a+
4)^(1/2))^(1/2))*(x-1+(-1-(a+4)^(1/2))^(1/2))+((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*((-(-1-(a+4)^(1/
2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)
)/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(x-1+(-1+(a+4)^(1/2))^(1/2))^2*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1-(-1-(a+4)
^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(a+
4)^(1/2))^(1/2)*(x-1+(-1-(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(
1/2))^(1/2)))^(1/2)*(-1/2*((1-(-1+(a+4)^(1/2))^(1/2))*(1+(-1+(a+4)^(1/2))^(1/2))-(1-(-1-(a+4)^(1/2))^(1/2))*(1
+(-1+(a+4)^(1/2))^(1/2))+(1-(-1-(a+4)^(1/2))^(1/2))*(1-(-1+(a+4)^(1/2))^(1/2))+(1-(-1+(a+4)^(1/2))^(1/2))^2)/(
-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-1+(a+4)^(1/2))^(1/2)*EllipticF(((-(-1-(a+4)^(1/2))^(1/2)+(-1
+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a
+4)^(1/2))^(1/2)))^(1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(
1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))
^(1/2))-1/2*(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*EllipticE(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/
2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))
^(1/2)))^(1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2
))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2))/(-
1+(a+4)^(1/2))^(1/2)-4/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*EllipticPi(((-(-1-(a+4)^(1/2))^(1/2)+(
-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+
(a+4)^(1/2))^(1/2)))^(1/2),((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(
1/2))^(1/2)),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))
/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2))))/(-
(x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1-(a+4)^(1/2))^(1/2))*(x-1+(-1-(a+4)^(1/2))^(
1/2)))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \sqrt {-x^4+4\,x^3-8\,x^2+8\,x+a} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + 8*x - 8*x^2 + 4*x^3 - x^4)^(1/2),x)

[Out]

int((a + 8*x - 8*x^2 + 4*x^3 - x^4)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a - x^{4} + 4 x^{3} - 8 x^{2} + 8 x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**4+4*x**3-8*x**2+a+8*x)**(1/2),x)

[Out]

Integral(sqrt(a - x**4 + 4*x**3 - 8*x**2 + 8*x), x)

________________________________________________________________________________________