3.745 \(\int \sqrt {\frac {a+b x}{c+d x}} \, dx\)

Optimal. Leaf size=76 \[ \frac {(c+d x) \sqrt {\frac {a+b x}{c+d x}}}{d}-\frac {(b c-a d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {\frac {a+b x}{c+d x}}}{\sqrt {b}}\right )}{\sqrt {b} d^{3/2}} \]

[Out]

-(-a*d+b*c)*arctanh(d^(1/2)*((b*x+a)/(d*x+c))^(1/2)/b^(1/2))/d^(3/2)/b^(1/2)+(d*x+c)*((b*x+a)/(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {1959, 288, 208} \[ \frac {(c+d x) \sqrt {\frac {a+b x}{c+d x}}}{d}-\frac {(b c-a d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {\frac {a+b x}{c+d x}}}{\sqrt {b}}\right )}{\sqrt {b} d^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[(a + b*x)/(c + d*x)],x]

[Out]

(Sqrt[(a + b*x)/(c + d*x)]*(c + d*x))/d - ((b*c - a*d)*ArcTanh[(Sqrt[d]*Sqrt[(a + b*x)/(c + d*x)])/Sqrt[b]])/(
Sqrt[b]*d^(3/2))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 1959

Int[(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> With[{q = Denominator[p]
}, Dist[(q*e*(b*c - a*d))/n, Subst[Int[(x^(q*(p + 1) - 1)*(-(a*e) + c*x^q)^(1/n - 1))/(b*e - d*x^q)^(1/n + 1),
 x], x, ((e*(a + b*x^n))/(c + d*x^n))^(1/q)], x]] /; FreeQ[{a, b, c, d, e}, x] && FractionQ[p] && IntegerQ[1/n
]

Rubi steps

\begin {align*} \int \sqrt {\frac {a+b x}{c+d x}} \, dx &=(2 (b c-a d)) \operatorname {Subst}\left (\int \frac {x^2}{\left (b-d x^2\right )^2} \, dx,x,\sqrt {\frac {a+b x}{c+d x}}\right )\\ &=\frac {\sqrt {\frac {a+b x}{c+d x}} (c+d x)}{d}-\frac {(b c-a d) \operatorname {Subst}\left (\int \frac {1}{b-d x^2} \, dx,x,\sqrt {\frac {a+b x}{c+d x}}\right )}{d}\\ &=\frac {\sqrt {\frac {a+b x}{c+d x}} (c+d x)}{d}-\frac {(b c-a d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {\frac {a+b x}{c+d x}}}{\sqrt {b}}\right )}{\sqrt {b} d^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.27, size = 123, normalized size = 1.62 \[ \frac {\sqrt {\frac {a+b x}{c+d x}} \left (b \sqrt {d} (a+b x) (c+d x)-\sqrt {a+b x} (b c-a d)^{3/2} \sqrt {\frac {b (c+d x)}{b c-a d}} \sinh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b c-a d}}\right )\right )}{b d^{3/2} (a+b x)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[(a + b*x)/(c + d*x)],x]

[Out]

(Sqrt[(a + b*x)/(c + d*x)]*(b*Sqrt[d]*(a + b*x)*(c + d*x) - (b*c - a*d)^(3/2)*Sqrt[a + b*x]*Sqrt[(b*(c + d*x))
/(b*c - a*d)]*ArcSinh[(Sqrt[d]*Sqrt[a + b*x])/Sqrt[b*c - a*d]]))/(b*d^(3/2)*(a + b*x))

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 180, normalized size = 2.37 \[ \left [-\frac {{\left (b c - a d\right )} \sqrt {b d} \log \left (2 \, b d x + b c + a d + 2 \, \sqrt {b d} {\left (d x + c\right )} \sqrt {\frac {b x + a}{d x + c}}\right ) - 2 \, {\left (b d^{2} x + b c d\right )} \sqrt {\frac {b x + a}{d x + c}}}{2 \, b d^{2}}, \frac {{\left (b c - a d\right )} \sqrt {-b d} \arctan \left (\frac {\sqrt {-b d} {\left (d x + c\right )} \sqrt {\frac {b x + a}{d x + c}}}{b d x + a d}\right ) + {\left (b d^{2} x + b c d\right )} \sqrt {\frac {b x + a}{d x + c}}}{b d^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x+a)/(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/2*((b*c - a*d)*sqrt(b*d)*log(2*b*d*x + b*c + a*d + 2*sqrt(b*d)*(d*x + c)*sqrt((b*x + a)/(d*x + c))) - 2*(b
*d^2*x + b*c*d)*sqrt((b*x + a)/(d*x + c)))/(b*d^2), ((b*c - a*d)*sqrt(-b*d)*arctan(sqrt(-b*d)*(d*x + c)*sqrt((
b*x + a)/(d*x + c))/(b*d*x + a*d)) + (b*d^2*x + b*c*d)*sqrt((b*x + a)/(d*x + c)))/(b*d^2)]

________________________________________________________________________________________

giac [A]  time = 0.57, size = 119, normalized size = 1.57 \[ \frac {\sqrt {b d x^{2} + b c x + a d x + a c} \mathrm {sgn}\left (d x + c\right )}{d} + \frac {{\left (b c \mathrm {sgn}\left (d x + c\right ) - a d \mathrm {sgn}\left (d x + c\right )\right )} \sqrt {b d} \log \left ({\left | -2 \, {\left (\sqrt {b d} x - \sqrt {b d x^{2} + b c x + a d x + a c}\right )} b d - \sqrt {b d} b c - \sqrt {b d} a d \right |}\right )}{2 \, b d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x+a)/(d*x+c))^(1/2),x, algorithm="giac")

[Out]

sqrt(b*d*x^2 + b*c*x + a*d*x + a*c)*sgn(d*x + c)/d + 1/2*(b*c*sgn(d*x + c) - a*d*sgn(d*x + c))*sqrt(b*d)*log(a
bs(-2*(sqrt(b*d)*x - sqrt(b*d*x^2 + b*c*x + a*d*x + a*c))*b*d - sqrt(b*d)*b*c - sqrt(b*d)*a*d))/(b*d^2)

________________________________________________________________________________________

maple [B]  time = 0.01, size = 152, normalized size = 2.00 \[ \frac {\sqrt {\frac {b x +a}{d x +c}}\, \left (d x +c \right ) \left (a d \ln \left (\frac {2 b d x +a d +b c +2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}}{2 \sqrt {b d}}\right )-b c \ln \left (\frac {2 b d x +a d +b c +2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}}{2 \sqrt {b d}}\right )+2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}\right )}{2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*x+a)/(d*x+c))^(1/2),x)

[Out]

1/2*((b*x+a)/(d*x+c))^(1/2)*(d*x+c)*(ln(1/2*(2*b*d*x+a*d+b*c+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2))/(b*d)^(1/2
))*a*d-ln(1/2*(2*b*d*x+a*d+b*c+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2))/(b*d)^(1/2))*b*c+2*((b*x+a)*(d*x+c))^(1/
2)*(b*d)^(1/2))/((b*x+a)*(d*x+c))^(1/2)/d/(b*d)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.23, size = 118, normalized size = 1.55 \[ \frac {{\left (b c - a d\right )} \sqrt {\frac {b x + a}{d x + c}}}{b d - \frac {{\left (b x + a\right )} d^{2}}{d x + c}} + \frac {{\left (b c - a d\right )} \log \left (\frac {d \sqrt {\frac {b x + a}{d x + c}} - \sqrt {b d}}{d \sqrt {\frac {b x + a}{d x + c}} + \sqrt {b d}}\right )}{2 \, \sqrt {b d} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x+a)/(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

(b*c - a*d)*sqrt((b*x + a)/(d*x + c))/(b*d - (b*x + a)*d^2/(d*x + c)) + 1/2*(b*c - a*d)*log((d*sqrt((b*x + a)/
(d*x + c)) - sqrt(b*d))/(d*sqrt((b*x + a)/(d*x + c)) + sqrt(b*d)))/(sqrt(b*d)*d)

________________________________________________________________________________________

mupad [B]  time = 0.27, size = 90, normalized size = 1.18 \[ \frac {\mathrm {atanh}\left (\frac {\sqrt {d}\,\sqrt {\frac {a+b\,x}{c+d\,x}}}{\sqrt {b}}\right )\,\left (a\,d-b\,c\right )}{\sqrt {b}\,d^{3/2}}+\frac {\left (a\,d-b\,c\right )\,\sqrt {\frac {a+b\,x}{c+d\,x}}}{b\,d\,\left (\frac {d\,\left (a+b\,x\right )}{b\,\left (c+d\,x\right )}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x)/(c + d*x))^(1/2),x)

[Out]

(atanh((d^(1/2)*((a + b*x)/(c + d*x))^(1/2))/b^(1/2))*(a*d - b*c))/(b^(1/2)*d^(3/2)) + ((a*d - b*c)*((a + b*x)
/(c + d*x))^(1/2))/(b*d*((d*(a + b*x))/(b*(c + d*x)) - 1))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {\frac {a + b x}{c + d x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x+a)/(d*x+c))**(1/2),x)

[Out]

Integral(sqrt((a + b*x)/(c + d*x)), x)

________________________________________________________________________________________