3.728 \(\int \frac {1+2 \sqrt {1+x}}{x \sqrt {1+x} \sqrt {x+\sqrt {1+x}}} \, dx\)

Optimal. Leaf size=61 \[ 3 \tanh ^{-1}\left (\frac {1-3 \sqrt {x+1}}{2 \sqrt {x+\sqrt {x+1}}}\right )-\tan ^{-1}\left (\frac {\sqrt {x+1}+3}{2 \sqrt {x+\sqrt {x+1}}}\right ) \]

[Out]

-arctan(1/2*(3+(1+x)^(1/2))/(x+(1+x)^(1/2))^(1/2))+3*arctanh(1/2*(1-3*(1+x)^(1/2))/(x+(1+x)^(1/2))^(1/2))

________________________________________________________________________________________

Rubi [A]  time = 0.51, antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {1033, 724, 206, 204} \[ 3 \tanh ^{-1}\left (\frac {1-3 \sqrt {x+1}}{2 \sqrt {x+\sqrt {x+1}}}\right )-\tan ^{-1}\left (\frac {\sqrt {x+1}+3}{2 \sqrt {x+\sqrt {x+1}}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(1 + 2*Sqrt[1 + x])/(x*Sqrt[1 + x]*Sqrt[x + Sqrt[1 + x]]),x]

[Out]

-ArcTan[(3 + Sqrt[1 + x])/(2*Sqrt[x + Sqrt[1 + x]])] + 3*ArcTanh[(1 - 3*Sqrt[1 + x])/(2*Sqrt[x + Sqrt[1 + x]])
]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1033

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[-(a*c), 2]}, Dist[h/2 + (c*g)/(2*q), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - (c*g)
/(2*q), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[-(a*c)]

Rubi steps

\begin {align*} \int \frac {1+2 \sqrt {1+x}}{x \sqrt {1+x} \sqrt {x+\sqrt {1+x}}} \, dx &=2 \operatorname {Subst}\left (\int \frac {1+2 x}{\left (-1+x^2\right ) \sqrt {-1+x+x^2}} \, dx,x,\sqrt {1+x}\right )\\ &=3 \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {-1+x+x^2}} \, dx,x,\sqrt {1+x}\right )+\operatorname {Subst}\left (\int \frac {1}{(1+x) \sqrt {-1+x+x^2}} \, dx,x,\sqrt {1+x}\right )\\ &=-\left (2 \operatorname {Subst}\left (\int \frac {1}{-4-x^2} \, dx,x,\frac {-3-\sqrt {1+x}}{\sqrt {x+\sqrt {1+x}}}\right )\right )-6 \operatorname {Subst}\left (\int \frac {1}{4-x^2} \, dx,x,\frac {-1+3 \sqrt {1+x}}{\sqrt {x+\sqrt {1+x}}}\right )\\ &=-\tan ^{-1}\left (\frac {3+\sqrt {1+x}}{2 \sqrt {x+\sqrt {1+x}}}\right )+3 \tanh ^{-1}\left (\frac {1-3 \sqrt {1+x}}{2 \sqrt {x+\sqrt {1+x}}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 61, normalized size = 1.00 \[ \tan ^{-1}\left (\frac {-\sqrt {x+1}-3}{2 \sqrt {x+\sqrt {x+1}}}\right )-3 \tanh ^{-1}\left (\frac {3 \sqrt {x+1}-1}{2 \sqrt {x+\sqrt {x+1}}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + 2*Sqrt[1 + x])/(x*Sqrt[1 + x]*Sqrt[x + Sqrt[1 + x]]),x]

[Out]

ArcTan[(-3 - Sqrt[1 + x])/(2*Sqrt[x + Sqrt[1 + x]])] - 3*ArcTanh[(-1 + 3*Sqrt[1 + x])/(2*Sqrt[x + Sqrt[1 + x]]
)]

________________________________________________________________________________________

fricas [A]  time = 2.40, size = 62, normalized size = 1.02 \[ \arctan \left (\frac {2 \, \sqrt {x + \sqrt {x + 1}} {\left (\sqrt {x + 1} - 3\right )}}{x - 8}\right ) + 3 \, \log \left (\frac {2 \, \sqrt {x + \sqrt {x + 1}} {\left (\sqrt {x + 1} + 1\right )} - 3 \, x - 2 \, \sqrt {x + 1} - 2}{x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+2*(1+x)^(1/2))/x/(1+x)^(1/2)/(x+(1+x)^(1/2))^(1/2),x, algorithm="fricas")

[Out]

arctan(2*sqrt(x + sqrt(x + 1))*(sqrt(x + 1) - 3)/(x - 8)) + 3*log((2*sqrt(x + sqrt(x + 1))*(sqrt(x + 1) + 1) -
 3*x - 2*sqrt(x + 1) - 2)/x)

________________________________________________________________________________________

giac [A]  time = 1.16, size = 65, normalized size = 1.07 \[ 2 \, \arctan \left (\sqrt {x + \sqrt {x + 1}} - \sqrt {x + 1} - 1\right ) - 3 \, \log \left ({\left | \sqrt {x + \sqrt {x + 1}} - \sqrt {x + 1} + 2 \right |}\right ) + 3 \, \log \left ({\left | \sqrt {x + \sqrt {x + 1}} - \sqrt {x + 1} \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+2*(1+x)^(1/2))/x/(1+x)^(1/2)/(x+(1+x)^(1/2))^(1/2),x, algorithm="giac")

[Out]

2*arctan(sqrt(x + sqrt(x + 1)) - sqrt(x + 1) - 1) - 3*log(abs(sqrt(x + sqrt(x + 1)) - sqrt(x + 1) + 2)) + 3*lo
g(abs(sqrt(x + sqrt(x + 1)) - sqrt(x + 1)))

________________________________________________________________________________________

maple [A]  time = 0.02, size = 68, normalized size = 1.11 \[ -3 \arctanh \left (\frac {3 \sqrt {x +1}-1}{2 \sqrt {\left (\sqrt {x +1}-1\right )^{2}+3 \sqrt {x +1}-2}}\right )+\arctan \left (\frac {-\sqrt {x +1}-3}{2 \sqrt {\left (1+\sqrt {x +1}\right )^{2}-\sqrt {x +1}-2}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+2*(x+1)^(1/2))/x/(x+1)^(1/2)/(x+(x+1)^(1/2))^(1/2),x)

[Out]

-3*arctanh(1/2*(3*(x+1)^(1/2)-1)/(((x+1)^(1/2)-1)^2+3*(x+1)^(1/2)-2)^(1/2))+arctan(1/2*(-(x+1)^(1/2)-3)/((1+(x
+1)^(1/2))^2-(x+1)^(1/2)-2)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {2 \, \sqrt {x + 1} + 1}{\sqrt {x + \sqrt {x + 1}} \sqrt {x + 1} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+2*(1+x)^(1/2))/x/(1+x)^(1/2)/(x+(1+x)^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate((2*sqrt(x + 1) + 1)/(sqrt(x + sqrt(x + 1))*sqrt(x + 1)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {2\,\sqrt {x+1}+1}{x\,\sqrt {x+\sqrt {x+1}}\,\sqrt {x+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*(x + 1)^(1/2) + 1)/(x*(x + (x + 1)^(1/2))^(1/2)*(x + 1)^(1/2)),x)

[Out]

int((2*(x + 1)^(1/2) + 1)/(x*(x + (x + 1)^(1/2))^(1/2)*(x + 1)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {2 \sqrt {x + 1} + 1}{x \sqrt {x + 1} \sqrt {x + \sqrt {x + 1}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+2*(1+x)**(1/2))/x/(1+x)**(1/2)/(x+(1+x)**(1/2))**(1/2),x)

[Out]

Integral((2*sqrt(x + 1) + 1)/(x*sqrt(x + 1)*sqrt(x + sqrt(x + 1))), x)

________________________________________________________________________________________