3.721 \(\int \frac {1}{\sqrt {1+x+\sqrt {-1+2 x}}} \, dx\)

Optimal. Leaf size=44 \[ 2 \sqrt {x+\sqrt {2 x-1}+1}-\sqrt {2} \sinh ^{-1}\left (\frac {\sqrt {2 x-1}+1}{\sqrt {2}}\right ) \]

[Out]

-arcsinh(1/2*(1+(-1+2*x)^(1/2))*2^(1/2))*2^(1/2)+2*(1+x+(-1+2*x)^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 52, normalized size of antiderivative = 1.18, number of steps used = 4, number of rules used = 3, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {640, 619, 215} \[ \sqrt {2} \sqrt {2 x+2 \sqrt {2 x-1}+2}-\sqrt {2} \sinh ^{-1}\left (\frac {\sqrt {2 x-1}+1}{\sqrt {2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[1 + x + Sqrt[-1 + 2*x]],x]

[Out]

Sqrt[2]*Sqrt[2 + 2*x + 2*Sqrt[-1 + 2*x]] - Sqrt[2]*ArcSinh[(1 + Sqrt[-1 + 2*x])/Sqrt[2]]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 619

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*((-4*c)/(b^2 - 4*a*c))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {1+x+\sqrt {-1+2 x}}} \, dx &=\operatorname {Subst}\left (\int \frac {x}{\sqrt {\frac {3}{2}+x+\frac {x^2}{2}}} \, dx,x,\sqrt {-1+2 x}\right )\\ &=\sqrt {2} \sqrt {2+2 x+2 \sqrt {-1+2 x}}-\operatorname {Subst}\left (\int \frac {1}{\sqrt {\frac {3}{2}+x+\frac {x^2}{2}}} \, dx,x,\sqrt {-1+2 x}\right )\\ &=\sqrt {2} \sqrt {2+2 x+2 \sqrt {-1+2 x}}-\operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{2}}} \, dx,x,1+\sqrt {-1+2 x}\right )\\ &=\sqrt {2} \sqrt {2+2 x+2 \sqrt {-1+2 x}}-\sqrt {2} \sinh ^{-1}\left (\frac {1+\sqrt {-1+2 x}}{\sqrt {2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 44, normalized size = 1.00 \[ 2 \sqrt {x+\sqrt {2 x-1}+1}-\sqrt {2} \sinh ^{-1}\left (\frac {\sqrt {2 x-1}+1}{\sqrt {2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[1 + x + Sqrt[-1 + 2*x]],x]

[Out]

2*Sqrt[1 + x + Sqrt[-1 + 2*x]] - Sqrt[2]*ArcSinh[(1 + Sqrt[-1 + 2*x])/Sqrt[2]]

________________________________________________________________________________________

fricas [B]  time = 1.08, size = 85, normalized size = 1.93 \[ \frac {1}{4} \, \sqrt {2} \log \left (-8 \, x^{2} - 8 \, {\left (2 \, x + 1\right )} \sqrt {2 \, x - 1} + 2 \, {\left (\sqrt {2} {\left (2 \, x + 3\right )} \sqrt {2 \, x - 1} + \sqrt {2} {\left (6 \, x - 1\right )}\right )} \sqrt {x + \sqrt {2 \, x - 1} + 1} - 24 \, x + 7\right ) + 2 \, \sqrt {x + \sqrt {2 \, x - 1} + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x+(-1+2*x)^(1/2))^(1/2),x, algorithm="fricas")

[Out]

1/4*sqrt(2)*log(-8*x^2 - 8*(2*x + 1)*sqrt(2*x - 1) + 2*(sqrt(2)*(2*x + 3)*sqrt(2*x - 1) + sqrt(2)*(6*x - 1))*s
qrt(x + sqrt(2*x - 1) + 1) - 24*x + 7) + 2*sqrt(x + sqrt(2*x - 1) + 1)

________________________________________________________________________________________

giac [A]  time = 0.30, size = 49, normalized size = 1.11 \[ \sqrt {2} {\left (\sqrt {2 \, x + 2 \, \sqrt {2 \, x - 1} + 2} + \log \left (\sqrt {2 \, x + 2 \, \sqrt {2 \, x - 1} + 2} - \sqrt {2 \, x - 1} - 1\right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x+(-1+2*x)^(1/2))^(1/2),x, algorithm="giac")

[Out]

sqrt(2)*(sqrt(2*x + 2*sqrt(2*x - 1) + 2) + log(sqrt(2*x + 2*sqrt(2*x - 1) + 2) - sqrt(2*x - 1) - 1))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 38, normalized size = 0.86 \[ -\sqrt {2}\, \arcsinh \left (\frac {\left (1+\sqrt {2 x -1}\right ) \sqrt {2}}{2}\right )+\sqrt {4 x +4+4 \sqrt {2 x -1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1+x+(2*x-1)^(1/2))^(1/2),x)

[Out]

(4*x+4+4*(2*x-1)^(1/2))^(1/2)-arcsinh(1/2*(1+(2*x-1)^(1/2))*2^(1/2))*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {x + \sqrt {2 \, x - 1} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x+(-1+2*x)^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(x + sqrt(2*x - 1) + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {1}{\sqrt {x+\sqrt {2\,x-1}+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x + (2*x - 1)^(1/2) + 1)^(1/2),x)

[Out]

int(1/(x + (2*x - 1)^(1/2) + 1)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {x + \sqrt {2 x - 1} + 1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x+(-1+2*x)**(1/2))**(1/2),x)

[Out]

Integral(1/sqrt(x + sqrt(2*x - 1) + 1), x)

________________________________________________________________________________________