3.68 \(\int \frac {x}{(2^{2/3}+x) \sqrt {-1-x^3}} \, dx\)

Optimal. Leaf size=156 \[ \frac {2 \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}-\frac {2\ 2^{2/3} \tanh ^{-1}\left (\frac {\sqrt {3} \left (\sqrt [3]{2} x+1\right )}{\sqrt {-x^3-1}}\right )}{3 \sqrt {3}} \]

[Out]

-2/9*2^(2/3)*arctanh((1+2^(1/3)*x)*3^(1/2)/(-x^3-1)^(1/2))*3^(1/2)+2/9*(1+x)*EllipticF((1+x+3^(1/2))/(1+x-3^(1
/2)),2*I-I*3^(1/2))*(1/2*6^(1/2)-1/2*2^(1/2))*((x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)*3^(3/4)/(-x^3-1)^(1/2)/((-1-x)
/(1+x-3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2139, 219, 2137, 206} \[ \frac {2 \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}-\frac {2\ 2^{2/3} \tanh ^{-1}\left (\frac {\sqrt {3} \left (\sqrt [3]{2} x+1\right )}{\sqrt {-x^3-1}}\right )}{3 \sqrt {3}} \]

Antiderivative was successfully verified.

[In]

Int[x/((2^(2/3) + x)*Sqrt[-1 - x^3]),x]

[Out]

(-2*2^(2/3)*ArcTanh[(Sqrt[3]*(1 + 2^(1/3)*x))/Sqrt[-1 - x^3]])/(3*Sqrt[3]) + (2*Sqrt[2 - Sqrt[3]]*(1 + x)*Sqrt
[(1 - x + x^2)/(1 - Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(3
*3^(1/4)*Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2)]*Sqrt[-1 - x^3])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 219

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 - Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 + Sqrt[3
])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[-((s*(s + r*x))/((1 - S
qrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 2137

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(2*e)/d, Subst[Int[
1/(1 + 3*a*x^2), x], x, (1 + (2*d*x)/c)/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f,
 0] && EqQ[b*c^3 - 4*a*d^3, 0] && EqQ[2*d*e + c*f, 0]

Rule 2139

Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(2*d*e + c*f)/(3*c
*d), Int[1/Sqrt[a + b*x^3], x], x] + Dist[(d*e - c*f)/(3*c*d), Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x]
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && (EqQ[b*c^3 - 4*a*d^3, 0] || EqQ[b*c^3 + 8*a*d^3,
0]) && NeQ[2*d*e + c*f, 0]

Rubi steps

\begin {align*} \int \frac {x}{\left (2^{2/3}+x\right ) \sqrt {-1-x^3}} \, dx &=\frac {1}{3} \int \frac {1}{\sqrt {-1-x^3}} \, dx-\frac {1}{3} \int \frac {2^{2/3}-2 x}{\left (2^{2/3}+x\right ) \sqrt {-1-x^3}} \, dx\\ &=\frac {2 \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}-\frac {1}{3} \left (2\ 2^{2/3}\right ) \operatorname {Subst}\left (\int \frac {1}{1-3 x^2} \, dx,x,\frac {1+\sqrt [3]{2} x}{\sqrt {-1-x^3}}\right )\\ &=-\frac {2\ 2^{2/3} \tanh ^{-1}\left (\frac {\sqrt {3} \left (1+\sqrt [3]{2} x\right )}{\sqrt {-1-x^3}}\right )}{3 \sqrt {3}}+\frac {2 \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.23, size = 209, normalized size = 1.34 \[ \frac {2 \sqrt {\frac {x+1}{1+\sqrt [3]{-1}}} \left (-\frac {\left (\sqrt [3]{-1}-x\right ) \sqrt {\frac {\sqrt [3]{-1}-(-1)^{2/3} x}{1+\sqrt [3]{-1}}} F\left (\sin ^{-1}\left (\sqrt {\frac {(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{\sqrt {\frac {(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}}+\frac {i 2^{2/3} \sqrt {x^2-x+1} \Pi \left (\frac {i \sqrt {3}}{\sqrt [3]{-1}+2^{2/3}};\sin ^{-1}\left (\sqrt {\frac {(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{\sqrt [3]{-1}+2^{2/3}}\right )}{\sqrt {-x^3-1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x/((2^(2/3) + x)*Sqrt[-1 - x^3]),x]

[Out]

(2*Sqrt[(1 + x)/(1 + (-1)^(1/3))]*(-((((-1)^(1/3) - x)*Sqrt[((-1)^(1/3) - (-1)^(2/3)*x)/(1 + (-1)^(1/3))]*Elli
pticF[ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))
]) + (I*2^(2/3)*Sqrt[1 - x + x^2]*EllipticPi[(I*Sqrt[3])/((-1)^(1/3) + 2^(2/3)), ArcSin[Sqrt[(1 + (-1)^(2/3)*x
)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/((-1)^(1/3) + 2^(2/3))))/Sqrt[-1 - x^3]

________________________________________________________________________________________

fricas [F]  time = 0.87, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (x^{3} - 2^{\frac {2}{3}} x^{2} + 2 \cdot 2^{\frac {1}{3}} x\right )} \sqrt {-x^{3} - 1}}{x^{6} + 5 \, x^{3} + 4}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(2^(2/3)+x)/(-x^3-1)^(1/2),x, algorithm="fricas")

[Out]

integral(-(x^3 - 2^(2/3)*x^2 + 2*2^(1/3)*x)*sqrt(-x^3 - 1)/(x^6 + 5*x^3 + 4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {-x^{3} - 1} {\left (x + 2^{\frac {2}{3}}\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(2^(2/3)+x)/(-x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate(x/(sqrt(-x^3 - 1)*(x + 2^(2/3))), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 249, normalized size = 1.60 \[ -\frac {2 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticF \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}}+\frac {2 i 2^{\frac {2}{3}} \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{2^{\frac {2}{3}}+\frac {1}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}\, \left (2^{\frac {2}{3}}+\frac {1}{2}+\frac {i \sqrt {3}}{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(2^(2/3)+x)/(-x^3-1)^(1/2),x)

[Out]

-2/3*I*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x+1)/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x-1/2+1/2*I*3^(1
/2))*3^(1/2))^(1/2)/(-x^3-1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(3
/2+1/2*I*3^(1/2)))^(1/2))+2/3*I*2^(2/3)*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x+1)/(3/2+1/2*I*3^(1
/2)))^(1/2)*(-I*(x-1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3-1)^(1/2)/(2^(2/3)+1/2+1/2*I*3^(1/2))*EllipticPi(1/3
*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(2^(2/3)+1/2+1/2*I*3^(1/2)),(I*3^(1/2)/(3/2+1/2*I*3
^(1/2)))^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {-x^{3} - 1} {\left (x + 2^{\frac {2}{3}}\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(2^(2/3)+x)/(-x^3-1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/(sqrt(-x^3 - 1)*(x + 2^(2/3))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x}{\sqrt {-x^3-1}\,\left (x+2^{2/3}\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((- x^3 - 1)^(1/2)*(x + 2^(2/3))),x)

[Out]

int(x/((- x^3 - 1)^(1/2)*(x + 2^(2/3))), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {- \left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x + 2^{\frac {2}{3}}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(2**(2/3)+x)/(-x**3-1)**(1/2),x)

[Out]

Integral(x/(sqrt(-(x + 1)*(x**2 - x + 1))*(x + 2**(2/3))), x)

________________________________________________________________________________________