3.679 \(\int \frac {\sqrt {-1+\frac {1}{x^2}}}{x (-1+x^2)^2} \, dx\)

Optimal. Leaf size=21 \[ \frac {1}{\sqrt {\frac {1}{x^2}-1}}-\sqrt {\frac {1}{x^2}-1} \]

[Out]

1/(-1+1/x^2)^(1/2)-(-1+1/x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {25, 266, 43} \[ \frac {1}{\sqrt {\frac {1}{x^2}-1}}-\sqrt {\frac {1}{x^2}-1} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[-1 + x^(-2)]/(x*(-1 + x^2)^2),x]

[Out]

1/Sqrt[-1 + x^(-2)] - Sqrt[-1 + x^(-2)]

Rule 25

Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(m_.)*((c_) + (d_.)*(x_)^(q_.))^(p_.), x_Symbol] :> Dist[(d/a)^p, Int[(u*(
a + b*x^n)^(m + p))/x^(n*p), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[q, -n] && IntegerQ[p] && EqQ[a*c -
b*d, 0] &&  !(IntegerQ[m] && NegQ[n])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\sqrt {-1+\frac {1}{x^2}}}{x \left (-1+x^2\right )^2} \, dx &=\int \frac {1}{\left (-1+\frac {1}{x^2}\right )^{3/2} x^5} \, dx\\ &=-\left (\frac {1}{2} \operatorname {Subst}\left (\int \frac {x}{(-1+x)^{3/2}} \, dx,x,\frac {1}{x^2}\right )\right )\\ &=-\left (\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {1}{(-1+x)^{3/2}}+\frac {1}{\sqrt {-1+x}}\right ) \, dx,x,\frac {1}{x^2}\right )\right )\\ &=\frac {1}{\sqrt {-1+\frac {1}{x^2}}}-\sqrt {-1+\frac {1}{x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 24, normalized size = 1.14 \[ \frac {\sqrt {\frac {1}{x^2}-1} \left (1-2 x^2\right )}{x^2-1} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[-1 + x^(-2)]/(x*(-1 + x^2)^2),x]

[Out]

(Sqrt[-1 + x^(-2)]*(1 - 2*x^2))/(-1 + x^2)

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 28, normalized size = 1.33 \[ -\frac {{\left (2 \, x^{2} - 1\right )} \sqrt {-\frac {x^{2} - 1}{x^{2}}}}{x^{2} - 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+1/x^2)^(1/2)/x/(x^2-1)^2,x, algorithm="fricas")

[Out]

-(2*x^2 - 1)*sqrt(-(x^2 - 1)/x^2)/(x^2 - 1)

________________________________________________________________________________________

giac [B]  time = 0.38, size = 58, normalized size = 2.76 \[ -\frac {\sqrt {-x^{2} + 1} x \mathrm {sgn}\relax (x)}{x^{2} - 1} + \frac {x \mathrm {sgn}\relax (x)}{2 \, {\left (\sqrt {-x^{2} + 1} - 1\right )}} - \frac {{\left (\sqrt {-x^{2} + 1} - 1\right )} \mathrm {sgn}\relax (x)}{2 \, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+1/x^2)^(1/2)/x/(x^2-1)^2,x, algorithm="giac")

[Out]

-sqrt(-x^2 + 1)*x*sgn(x)/(x^2 - 1) + 1/2*x*sgn(x)/(sqrt(-x^2 + 1) - 1) - 1/2*(sqrt(-x^2 + 1) - 1)*sgn(x)/x

________________________________________________________________________________________

maple [A]  time = 0.01, size = 29, normalized size = 1.38 \[ -\frac {\left (2 x^{2}-1\right ) \sqrt {-\frac {x^{2}-1}{x^{2}}}}{x^{2}-1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-1+1/x^2)^(1/2)/x/(x^2-1)^2,x)

[Out]

-(2*x^2-1)*(-(x^2-1)/x^2)^(1/2)/(x^2-1)

________________________________________________________________________________________

maxima [A]  time = 0.73, size = 30, normalized size = 1.43 \[ -\frac {{\left (2 \, x^{2} - 1\right )} \sqrt {x + 1} \sqrt {-x + 1}}{x^{3} - x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+1/x^2)^(1/2)/x/(x^2-1)^2,x, algorithm="maxima")

[Out]

-(2*x^2 - 1)*sqrt(x + 1)*sqrt(-x + 1)/(x^3 - x)

________________________________________________________________________________________

mupad [B]  time = 3.11, size = 25, normalized size = 1.19 \[ \frac {x\,\sqrt {\frac {1}{x^2}-1}\,\left (2\,x^2-1\right )}{x-x^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/x^2 - 1)^(1/2)/(x*(x^2 - 1)^2),x)

[Out]

(x*(1/x^2 - 1)^(1/2)*(2*x^2 - 1))/(x - x^3)

________________________________________________________________________________________

sympy [A]  time = 3.85, size = 20, normalized size = 0.95 \[ - \sqrt {-1 + \frac {1}{x^{2}}} + \frac {1}{\sqrt {-1 + \frac {1}{x^{2}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+1/x**2)**(1/2)/x/(x**2-1)**2,x)

[Out]

-sqrt(-1 + x**(-2)) + 1/sqrt(-1 + x**(-2))

________________________________________________________________________________________